1
|
Fattah IMR, Farhan ZA, Kontoleon KJ, kianfar E, Hadrawi SK. Hollow fiber membrane contactor based carbon dioxide absorption − stripping: a review. Macromol Res 2023. [DOI: 10.1007/s13233-023-00113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
2
|
Xue K, Fu H, Chen H, Zhang H, Gao D. Investigation of membrane wetting for CO2 capture by gas–liquid contactor based on ceramic membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Fu K, Wang S, Gu Z, Liu Y, Zai T, Li S, Chen X, Qiu M, Fan Y. Geometry effect on membrane absorption for
CO
2
capture. Part I: A hybrid modeling approach. AIChE J 2021. [DOI: 10.1002/aic.17471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kaiyun Fu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing China
| | - Sunyang Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing China
| | - Zhenbin Gu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing China
| | - Yushu Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing China
| | - Tianming Zai
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing China
| | - Shijie Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing China
| | - Xianfu Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing China
| | - Minghui Qiu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing China
| | - Yiqun Fan
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University Nanjing China
| |
Collapse
|
4
|
Chavan SR, Perré P, Pozzobon V, Lemaire J. CO 2 Absorption Using Hollow Fiber Membrane Contactors: Introducing pH Swing Absorption (pHSA) to Overcome Purity Limitation. MEMBRANES 2021; 11:membranes11070496. [PMID: 34209036 PMCID: PMC8304617 DOI: 10.3390/membranes11070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Recently, membrane contactors have gained more popularity in the field of CO2 removal; however, achieving high purity and competitive recovery for poor soluble gas (H2, N2, or CH4) remains elusive. Hence, a novel process for CO2 removal from a mixture of gases using hollow fiber membrane contactors is investigated theoretically and experimentally. A theoretical model is constructed to show that the dissolved residual CO2 hinders the capacity of the absorbent when it is regenerated. This model, backed up by experimental investigation, proves that achieving a purity > 99% without consuming excessive chemicals or energy remains challenging in a closed-loop system. As a solution, a novel strategy is proposed: the pH Swing Absorption which consists of manipulating the acido–basic equilibrium of CO2 in the absorption and desorption stages by injecting moderate acid and base amount. It aims at decreasing CO2 residual content in the regenerated absorbent, by converting CO2 into its ionic counterparts (HCO3− or CO32−) before absorption and improving CO2 degassing before desorption. Therefore, this strategy unlocks the theoretical limitation due to equilibrium with CO2 residual content in the absorbent and increases considerably the maximum achievable purity. Results also show the dependency of the performance on operating conditions such as total gas pressure and liquid flowrate. For N2/CO2 mixture, this process achieved a nitrogen purity of 99.97% with a N2 recovery rate of 94.13%. Similarly, for H2/CO2 mixture, a maximum H2 purity of 99.96% and recovery rate of 93.96% was obtained using this process. Moreover, the proposed patented process could potentially reduce energy or chemicals consumption.
Collapse
Affiliation(s)
- Sayali Ramdas Chavan
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| | - Patrick Perré
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| | - Victor Pozzobon
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| | - Julien Lemaire
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| |
Collapse
|
5
|
Xin Q, Li X, Hou H, Liang Q, Guo J, Wang S, Zhang L, Lin L, Ye H, Zhang Y. Superhydrophobic Surface-Constructed Membrane Contactor with Hierarchical Lotus-Leaf-Like Interfaces for Efficient SO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1827-1837. [PMID: 33379865 DOI: 10.1021/acsami.0c17534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An organic-inorganic polyvinylidene fluoride/polyvinylidene fluoride-silica (PVDF/PVDF-SiO2) mixed matrix membrane contactor is fabricated via a facile and efficient hydrophobic modification method. The solubility parameters of the PVDF particle are precisely regulated, the PVDF particles are blended with SiO2 nanoparticles to form PVDF-SiO2 suspension, and then the suspension is introduced onto the surface of the PVDF substrate by an in situ spin coating strategy. The PVDF particles are partly etched and incorporated to construct the adhesive PVDF-SiO2 core-shell layer on the PVDF substrate, which results in a more stable PVDF-SiO2 coating layer on the substrate. The surface structure is precisely regulated by changing the etching morphology of PVDF particles and amount of doped PVDF and SiO2 particles, forming an integrated porous PVDF-SiO2 layer and constructing hierarchical lotus-leaf-like interfaces. The resultant PVDF/PVDF-SiO2 membrane contactors display the relatively regular distribution of pore size with ∼420 nm and excellent hydrophobic property with a water contact angle of ∼158°, which noticeably lightens wetting phenomena of membrane contactors. The SO2 absorption fluxes can reach as high as 1.26 × 10-3 mol·m-2·s-1 using 0.625 M of ethanolamine (EA) as liquid absorbent. The high stability of the SO2 absorption flux test indicates the excellent interface compatibility between the PVDF-SiO2 coating layer and the PVDF substrate. The versatile organic-inorganic layer exhibits super hydrophobic property, which prevents wetting of membrane pores. In addition, the membrane mass transfer resistance (H/Km) and membrane phase transfer coefficient (Km) are explored.
Collapse
Affiliation(s)
- Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xu Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hailong Hou
- CNOOC Gas and Power Group/R & D Center, Chaoyang District Taiyanggong South Street No. 6, Beijing 100028, China
| | - Qingqing Liang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jianping Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
6
|
Hollow Fiber Membrane Contactors for Post-Combustion Carbon Capture: A Review of Modeling Approaches. MEMBRANES 2020; 10:membranes10120382. [PMID: 33266013 PMCID: PMC7759912 DOI: 10.3390/membranes10120382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022]
Abstract
Hollow fiber membrane contactors (HFMCs) can effectively separate CO2 from post-combustion flue gas by providing a high contact surface area between the flue gas and a liquid solvent. Accurate models of carbon capture HFMCs are necessary to understand the underlying transport processes and optimize HFMC designs. There are various methods for modeling HFMCs in 1D, 2D, or 3D. These methods include (but are not limited to): resistance-in-series, solution-diffusion, pore flow, Happel’s free surface model, and porous media modeling. This review paper discusses the state-of-the-art methods for modeling carbon capture HFMCs in 1D, 2D, and 3D. State-of-the-art 1D, 2D, and 3D carbon capture HFMC models are then compared in depth, based on their underlying assumptions. Numerical methods are also discussed, along with modeling to scale up HFMCs from the lab scale to the commercial scale.
Collapse
|
7
|
Biomethane production by adsorption technology: new cycle development, adsorbent selection and process optimization. ADSORPTION 2020. [DOI: 10.1007/s10450-020-00250-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Pozzobon V, Perré P. Mass transfer in hollow fiber membrane contactor: Computational fluid dynamics determination of the shell side resistance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Ghasem N. Modeling and Simulation of the Simultaneous Absorption/Stripping of CO 2 with Potassium Glycinate Solution in Membrane Contactor. MEMBRANES 2020; 10:membranes10040072. [PMID: 32316161 PMCID: PMC7231386 DOI: 10.3390/membranes10040072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
Global warming is an environmental problem caused mainly by one of the most serious greenhouse gas, CO2 emissions. Subsequently, the capture of CO2 from flue gas and natural gas is essential. Aqueous potassium glycinate (PG) is a promising novelty solvent used in the CO2 capture compared to traditional solvents; simultaneous solvent regeneration is associated with the absorption step. In present work, a 2D mathematical model where radial and axial diffusion are considered is developed for the simultaneous absorption/stripping process. The model describes the CO2/PG absorption/stripping process in a solvent–gas membrane absorption process. Regeneration data of rich potassium glycinate solvent using a varied range of acid gas loading (mol CO2 per mol PG) were used to predict the reversible reaction rate constant. A comparison of simulation results and experimental data validated the accuracy of the model predictions. The stripping reaction rate constant of rich potassium glycinate was determined experimentally and found to be a function of temperature and PG concentration. Model predictions were in good agreement with the experimental data. The results reveal that the percent removal of CO2 is directly proportional to CO2 loading and solvent stripping temperature.
Collapse
Affiliation(s)
- Nayef Ghasem
- Department of Chemical and Petroleum Eng., UAE University, Al-Ain, PO Box 15551, UAE
| |
Collapse
|
10
|
Rosli A, Ahmad AL, Low SC. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|