1
|
Nguyen DV, Wu D. Recent advances in innovative osmotic membranes for resource enrichment and energy production in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172153. [PMID: 38580129 DOI: 10.1016/j.scitotenv.2024.172153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Wastewater is a valuable resource that we can no longer afford to overlook. By recovering the nutrients and metals it contains and generating renewable energy, we can not only meet the rising demands for natural resources but also create a more sustainable and resilient future. Forward osmosis (FO) membranes are one of the most intriguing resource recovery process technologies because of their high organic retention, economical energy usage, and straightforward operation. However, the widespread adoption of FO membranes on a full-scale basis is hindered by several issues with previous membrane products. These include limited selectivity to different types of ions, insufficient water flux, and high susceptibility to membrane fouling during extended periods of operation. Hence, it is essential to either invent new FO membranes or modify the existing ones. The objective of this work is to provide a comprehensive and organized review of up-to-date advancements in the development of innovative osmotic membrane (IOM) materials for resource recovery (RR) and energy production (EP). The paper covers several aspects, including the limitations of current osmotic membrane technologies, a review of new membranes specifically designed for effective RR/EP, their applications in various industrial fields, integrated IOM systems, recent improvements in IOM fabrication processes using artificial intelligence, and a discussion of the challenges and prospects of the potential research. In general, recently developed IOMs have proven to be highly efficient in recovering organics (>99 %), nutrients (>86 %), and precious metals (>90 %). These new membranes have also demonstrated an ability to effectively harvest osmotic energy (with power output ranging from 6 to 38 W/m2) by applied pressure in the range of 8 to 30 bar. These findings suggest that IOMs is promised for efficient resource recovery and renewable energy production.
Collapse
Affiliation(s)
- Duc Viet Nguyen
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Ghent, Belgium
| | - Di Wu
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Ghent, Belgium.
| |
Collapse
|
2
|
Zhu X, Tian T, Li D, Hei S, Chen L, Song G, Lin W, Huang X. Interface interaction between silica and organic macromolecule conditioned forward osmosis membranes: Insights into quantitative thermodynamics and dynamics. WATER RESEARCH 2023; 232:119721. [PMID: 36780747 DOI: 10.1016/j.watres.2023.119721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Silica scaling is a rising concern in forward osmosis membrane-based water treatment process. The coexistence of ubiquitous organic macromolecules causes complex silica scaling. The silica scaling mechanism on the surface of the organic conditioned membrane remains unclear. An integrated multi scale thermodynamic and dynamic approach was used in this study to provide in-depth insights into the binding effect at the interface between the silica and the organic conditioned membrane at the molecular level. Sodium alginate (SA) was used as the model polysaccharide, bovine serum albumin (BSA) and lysozyme (LYZ) were chosen as two oppositely charged proteins. The results show that the silica scaling degree of different organic conditioned membranes follows the order LYZ > BSA > SA. The binding strength between silica and organic macromolecules and the membrane surface charge are the major factors governing the degree of silica scaling. Quartz crystal microbalance with dissipation (QCM-D), isothermal titration calorimetry (ITC), and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model analyses were conducted to quantify the binding capacity of silica to the organic conditioned membrane. The LYZ conditioned membrane exhibits the highest affinity for silica adsorption, and electrostatic interaction was the main molecular interaction force. This study provides fresh insights into how silica and an organic conditioned membrane interact and induce silica scaling, providing new information on potential mechanisms and control strategies to prevent membrane scaling.
Collapse
Affiliation(s)
- Xianzheng Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tuo Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangqing Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Wang Y, Zheng X, Xiao K, Xue J, Ulbricht M, Zhang Y. How and why does time matter - A comparison of fouling caused by organic substances on membranes over adsorption durations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:160655. [PMID: 36563756 DOI: 10.1016/j.scitotenv.2022.160655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of time on the severity of adsorptive fouling on polyvinylidene fluoride (PVDF) membrane surface. Sodium alginate (SA), bovine serum albumin (BSA), and humic acid (HA) were selected as representative membrane foulants. We examined the fouling behavior of these three selected model foulants over different adsorption durations (i.e., ~2300 and ~20,000 s). The fouling experiments were performed under conditions with and without the presence of Ca2+. For the SA-Ca2+ system, a longer adsorption duration slightly increased adsorption amount of SA but sharply reduced the reversibility (from 86.8 % to 12.9 %). For BSA-Ca2+, extended time did not change the deposition amount of BSA on the membrane surface, but led to more residual BSA after cleaning (reversibility decreased from 11.3 % to 4.5 %). Similarly, in the HA-Ca2+ system, adsorption duration barely influenced the adsorption amount of HA, while reduced its reversibility from 39.4 to 32.2 %. Therefore, time duration significantly influenced the amount and reversibility of membrane fouling depending on their chemical property. Corresponding results can be well reflected by a selected mathematical model. Further investigation on relevant mechanisms was conducted, quartz crystal microbalance with dissipation (QCM-D) and atomic force microscope (AFM) measurements indicated that longer adsorption duration resulted in more compacted fouling layer and stronger foulant-membrane interaction force. Our results suggest that time (adsorption duration) plays an important role in determining the reversibility of membrane fouling, while the severity is related to the inherent characteristics of foulants.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China; National Supervision & Inspection Center of Environmental Protection Equipment Quality, Jiangsu, Yixing 214205, China.
| | - Kang Xiao
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| | - Yaozhong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China.
| |
Collapse
|
4
|
Golgoli M, Khiadani M, Sen TK, Razmjou A, Johns ML, Zargar M. Synergistic effects of microplastics and organic foulants on the performance of forward osmosis membranes. CHEMOSPHERE 2023; 311:136906. [PMID: 36270521 DOI: 10.1016/j.chemosphere.2022.136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are emerging contaminants that are abundantly present in the influent and effluent of wastewater treatment plants (WWTPs). Forward osmosis (FO) is an advanced treatment technology with potential applications in WWTPs. The presence of MPs in WWTP effluents can contribute to FO fouling and performance deterioration. This study focuses on FO membrane fouling by MPs of different sizes, and the interactional impacts of MPs and Humic acid (HA) (as the most common organic foulant in WWTPs) on FO membrane performance. The synergistic effect of combined MPs and HA fouling is shown to cause higher flux decline for FO membranes than that of HA or MPs alone. Reverse salt flux increased in the presence of MPs, and decreased when HA was present. Further, full flux recovery was obtained for all fouled membranes after hydraulic cleaning. This indicates the efficiency of FO systems for treating wastewater with high fouling potential. This study highlights the necessity of considering MPs in studying fouling behaviour, and for mitigation strategies of membranes used in WWT. The fundamentals created here can be further extended to other membrane-assisted separation processes.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Tushar Kanti Sen
- Chemical Engineering Department, King Faisal University, P.O. Box: 380, Al-Ahsa, 31982, Saudi Arabia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia.
| |
Collapse
|
5
|
Is nanofiltration an efficient technology to recover and stabilize phenolic compounds from guava (Psidium guajava) leaves extract? FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Al-Sakaji BAK, Al-Asheh S, Maraqa MA. A Review on the Development of an Integer System Coupling Forward Osmosis Membrane and Ultrasound Waves for Water Desalination Processes. Polymers (Basel) 2022; 14:2710. [PMID: 35808754 PMCID: PMC9269142 DOI: 10.3390/polym14132710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
This review considers the forward osmosis (FO) membrane process as one of the feasible solutions for water desalination. Different aspects related to the FO process are reviewed with an emphasis on ultrasound assisted FO membrane processes. The different types of membranes used in FO are also reviewed and discussed; thus, their configuration, structure and applications are considered. Coupling ultrasound with FO enhances water flux through the membrane under certain conditions. In addition, this review addresses questions related to implementation of an ultrasound/FO system for seawater desalination, such as the impact on fouling, flow configuration, and location of fouling. Finally, the mechanisms for the impact of ultrasound on FO membranes are discussed and future research directions are suggested.
Collapse
Affiliation(s)
- Bara A. K. Al-Sakaji
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (B.A.K.A.-S.); (M.A.M.)
| | - Sameer Al-Asheh
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 2666, United Arab Emirates
| | - Munjed A. Maraqa
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (B.A.K.A.-S.); (M.A.M.)
- National Water and Energy Center, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
7
|
|
8
|
Effect of the Incorporation of ZIF-8@GO into the Thin-Film Membrane on Salt Rejection and BSA Fouling. MEMBRANES 2022; 12:membranes12040436. [PMID: 35448406 PMCID: PMC9027943 DOI: 10.3390/membranes12040436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
A series of Zeolitic imidazole framework-8 (ZIF-8) clusters supported on graphene oxide (ZIF-8@GO) nanocomposites were prepared by varying the ratios of ZIF-8 to GO. The resultant nanocomposites were characterized using various techniques, such as Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), Fourier Transform Infrared (FTIR) and Raman spectroscopy. These nanocomposites were incorporated into the thin film layer during interfacial polymerisation process of m-phenylenediamine (aqueous phase which contained the dispersed nanocomposites) and trimesoyl chloride (TMC, organic phase) at room temperature onto polyethersulfone (PES) ultrafiltration (UF) support membrane. The membrane surface morphology, cross section and surface roughness were characterized using SEM and AFM, respectively. Compared to the baseline membranes, the thin film nanofiltration (TFN) membranes exhibited improved pure water flux (from 1.66 up to 7.9 L.m-2h-1), salt rejection (from 40 to 98%) and fouling resistance (33 to 88%). Optimum ZIF-8 to GO ratio was established as indicated in observed pure water flux, salt rejection and BSA fouling resistance. Therefore, a balance in hydrophilic and porous effect of the filler was observed to lead to this observed membrane behaviour suggesting that careful filler design can result in performance gain for thin film composite (TFC) membranes for water treatment application.
Collapse
|
9
|
Teng J, Zhang H, Lin H, Lu M, Xu X, Gao T, You X. Molecular level insights into the dynamic evolution of forward osmosis fouling via thermodynamic modeling and quantum chemistry calculation: Effect of protein/polysaccharide ratios. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Forward Osmosis (FO) Membrane Fouling Mitigation during the Concentration of Cows’ Urine. MEMBRANES 2022; 12:membranes12020234. [PMID: 35207155 PMCID: PMC8877373 DOI: 10.3390/membranes12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
FO membrane fouling mitigation during the concentration of cows’ urine was investigated. In particular, the effects on the permeability recovery of cleaning methods such as membrane washing with deionized (DI) water, osmotic backwash, and chemical cleaning were studied. The characterization of foulants that accumulated on the membrane surface was found to be rich in sugars and proteins. The foulants were effectively removed by de-ionized water circulation (washing) and osmotic backwash. While osmotic back was more effective, it did not fully recover the permeability of the membrane. The foulants absorbed in the membrane pores were found to be mainly composed of sugars. Soaking the membrane in a solution of NaClO enabled the removal of foulants absorbed inside the membrane. It was revealed that soaking in 1% NaClO solution for 30 min achieved the best results (83% permeability recovery), while soaking for a longer time (10 h) using 0.2% NaClO resulted in counterproductive results.
Collapse
|
11
|
Xiao F, Ge H, Wang Y, Bian S, Tong Y, Gao C, Zhu G. Novel thin-film composite membrane with polydopamine-modified polyethylene support and tannic acid-Fe3+ interlayer for forward osmosis applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Nthunya LN, Bopape MF, Mahlangu OT, Mamba BB, Van der Bruggen B, Quist-Jensen CA, Richards H. Fouling, performance and cost analysis of membrane-based water desalination technologies: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113922. [PMID: 34731960 DOI: 10.1016/j.jenvman.2021.113922] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 05/05/2023]
Abstract
While water is a key resource required to sustain life, freshwater sources and aquifers are being depleted at an alarming rate. As a mitigation strategy, saline water desalination is commonly used to supplement the available water resources beyond direct water supply. This is achieved through effective advanced water purification processes enabled to handle complex matrix of saline wastewater. Membrane technology has been extensively evaluated for water desalination. This includes the use of reverse osmosis (RO) (the most mature membrane technology for desalination), pervaporation (PV), electrodialysis (ED), membrane distillation (MD), and membrane crystallization (MCr). Though nanofiltration (NF) is not mainly applied for desalination purposes, it is included in the reviewed processes because of its ability to reach 90% salt rejection efficiency for water softening. However, its comparison with other technologies is not provided since NF cannot be used for removal of NaCl during desalination. Remarkably, membrane processes remain critically affected by several challenges including membrane fouling. Moreover, capital expenditure (CAPEX) and operating expenditure (OPEX) are the key factors influencing the establishment of water desalination processes. Therefore, this paper provides a concise and yet comprehensive review of the membrane processes used to desalt saline water. Furthermore, the successes and failures of each process are critically reviewed. Finally, the CAPEX and OPEX of these water desalination processes are reviewed and compared. Based on the findings of this review, MD is relatively comparable to RO in terms of process performance achieving 99% salt rejections. Also, high salt rejections are reported on ED and PV. The operation and maintenance (O&M) costs remain lower in ED. Notably, the small-scale MD OPEX falls below that of RO. However, the large-scale O&M in MD is rarely reported due to its slow industrial growth, thus making RO the most preferred in the current water desalination markets.
Collapse
Affiliation(s)
- Lebea N Nthunya
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, 2050, Johannesburg, South Africa.
| | - Mokgadi F Bopape
- Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Private Bag x680, Pretoria, 0001, South Africa; Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Oranso T Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Cejna Anna Quist-Jensen
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Heidi Richards
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, 2050, Johannesburg, South Africa
| |
Collapse
|
13
|
Ibrar I, Yadav S, Ganbat N, Samal AK, Altaee A, Zhou JL, Nguyen TV. Feasibility of H 2O 2 cleaning for forward osmosis membrane treating landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113024. [PMID: 34139645 DOI: 10.1016/j.jenvman.2021.113024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
This study reports landfill leachate treatment by the forward osmosis (FO) process using hydrogen peroxide (H2O2) for membrane cleaning. Although chemical cleaning is an effective method for fouling control, it could compromise membrane integrity. Thus, understanding the impact of chemical cleaning on the forward osmosis membrane is essential to improving the membrane performance and lifespan. Preliminary results revealed a flux recovery of 98% in the AL-FS mode (active layer facing feed solution) and 90% in the AL-DS (draw solution faces active layer) using 30% H2O2 solution diluted to 3% by pure water. The experimental work investigated the effects of chemical cleaning on the polyamide active and polysulfone support layers since the FO membrane could operate in both orientations. Results revealed that polysulfone support layer was more sensitive to H2O2 damage than the polyamide active at a neutral pH. The extended exposure of thin-film composite (TFC) FO membrane to H2O2 was investigated, and the active layer tolerated H2O2 for 72 h, and the support layer for only 40 h. Extended operation of the TFC FO membrane in the AL-FS based on a combination of physical (hydraulic flushing with DI water) and H2O2 was reported, and chemical cleaning with H2O2 could still recover 92% of the flux.
Collapse
Affiliation(s)
- Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Science (CNMS), Jain University, India
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Tien Vinh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| |
Collapse
|
14
|
Mohd Ramli MR, Mat Radzi NH, Mohamad Esham MI, Alsebaeai MK, Ahmad AL. Advanced Application and Fouling Control in Hollow Fibre Direct Contact Membrane Distillation (HF-DCMD). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
An improved perm-selectivity prediction of forward osmosis membrane by incorporating the effect of the surface charge on the solute partitioning. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Yi X, Zhong H, Xie M, Wang X. A novel forward osmosis reactor assisted with microfiltration for deep thickening waste activated sludge: performance and implication. WATER RESEARCH 2021; 195:116998. [PMID: 33714909 DOI: 10.1016/j.watres.2021.116998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Waste activated sludge (WAS) treatment has gained growing interests for its increasingly capacity and high process cost. Sludge thickening is generally the first process of the WAS treatment. However, traditional sludge thickening approach was restrained by large footprint, low thickening efficiency, and tendency of releasing phosphorus. Here, we reported a novel microfiltration (MF) membrane assisting forward osmosis (FO) process (MF-FO) for sludge thickening. The MF-FO reactor achieved a sludge thickening of the mixed liquor suspended solids (MLSS) concentration from approximately 7 to 50 g/L after 10-day operation. More importantly, the effluent quality after FO filtration was superior with total organic carbon (TOC), ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and total phosphorus (TP) of 1.94 ± 0.46, 0.02 ± 0.07, 4.55 ± 1.59 and 0.24 ± 0.26 mg/L, respectively. Additionally, the integration of MF membrane successfully controlled the salinity of the MF-FO reactor in a low range of 1.6-3.1 mS/cm, which mitigated the flux decline of FO membrane and thus prolonged the operating time. In this case, the flux decline of FO membrane in the MF-FO reactor was mainly due to the membrane fouling. Furthermore, the fouling layer on the FO membrane surface was a gel layer mainly composed of biofoulants and organic foulants when the MLSS concentration was less than 30 g/L, while it turned to a cake layer when the MLSS concentration exceeded 30 g/L. Results reported here demonstrated that the MF-FO reactor is a promising WAS thickening technology for its excellent thickening performance and high effluent quality of FO membrane.
Collapse
Affiliation(s)
- Xiawen Yi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Huihui Zhong
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
17
|
Organic fouling in forward osmosis: Governing factors and a direct comparison with membrane filtration driven by hydraulic pressure. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Blazyte A, Alayande AB, Nguyen TT, Adha RS, Jang J, Aung MM, Kim IS. Effect of size fractioned alginate-based transparent exopolymer particles on initial bacterial adhesion of forward osmosis membrane support layer. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Nguyen TT, Adha RS, Field RW, Kim IS. Extended performance study of forward osmosis during wastewater reclamation: Quantification of fouling-based concentration polarization effects on the flux decline. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
|
21
|
Kim C, Lee C, Kim SW, Kim CS, Kim IS. Performance Evaluation and Fouling Propensity of Forward Osmosis (FO) Membrane for Reuse of Spent Dialysate. MEMBRANES 2020; 10:membranes10120438. [PMID: 33352895 PMCID: PMC7765897 DOI: 10.3390/membranes10120438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
The number of chronic renal disease patients has shown a significant increase in recent decades over the globe. Hemodialysis is the most commonly used treatment for renal replacement therapy (RRT) and dominates the global dialysis market. As one of the most water-consuming treatments in medical procedures, hemodialysis has room for improvement in reducing wastewater effluent. In this study, we investigated the technological feasibility of introducing the forward osmosis (FO) process for spent dialysate reuse. A 30 LMH of average water flux has been achieved using a commercial TFC membrane with high water permeability and salt removal. The water flux increased up to 23% with increasing flowrate from 100 mL/min to 500 mL/min. During 1 h spent dialysate treatment, the active layer facing feed solution (AL-FS) mode showed relatively higher flux stability with a 4–6 LMH of water flux reduction while the water flux decreased significantly at the active layer facing draw solution (AL-DS) mode with a 10–12 LMH reduction. In the pressure-assisted forward osmosis (PAFO) condition, high reverse salt flux was observed due to membrane deformation. During the membrane filtration process, scaling occurred due to the influence of polyvalent ions remaining on the membrane surface. Membrane fouling exacerbated the flux and was mainly caused by organic substances such as urea and creatinine. The results of this experiment provide an important basis for future research as a preliminary experiment for the introduction of the FO technique to hemodialysis.
Collapse
Affiliation(s)
- Chaeyeon Kim
- Global Desalination Research Center, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (C.K.); (C.L.)
| | - Chulmin Lee
- Global Desalination Research Center, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (C.K.); (C.L.)
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.W.K.); (C.S.K.)
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.W.K.); (C.S.K.)
| | - In S. Kim
- Global Desalination Research Center, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (C.K.); (C.L.)
- Correspondence: ; Tel.: +82-62-715-2436; Fax: +82-62-715-2584
| |
Collapse
|
22
|
Lee C, Nguyen TT, Adha RS, Shon HK, Kim IS. Influence of hydrodynamic operating conditions on organic fouling of spiral-wound forward osmosis membranes: Fouling-induced performance deterioration in FO-RO hybrid system. WATER RESEARCH 2020; 185:116154. [PMID: 32823194 DOI: 10.1016/j.watres.2020.116154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/27/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The forward osmosis-reverse osmosis (FO-RO) hybrid process has been extensively researched as part of attempts to reduce the high energy consumption of conventional seawater reverse osmosis in recent years. FO operating conditions play a substantial role in the hybrid process, dictating not only the performance of the entire system but also the propensity for fouling, which deteriorates performance in long-term field operations. Therefore, determining the optimal FO operating conditions with regard to membrane fouling may promote sustainable operation through efficient fouling control. This study thus evaluated the influence of each hydrodynamic operating condition (feed flowrate, draw flowrate, and hydraulic pressure difference) and their synergistic effects on fouling propensity in a pilot-scale FO operation under seawater and municipal wastewater conditions. Fouling-induced variation in water flux, channel pressure drop, diluted concentration, and the resulting specific energy consumption (SEC) were comparatively analyzed and utilized to project performance variation in a full-scale FO-RO system. Fouling-induced performance reduction significantly varied depending on hydrodynamic operating conditions and the resultant fouling propensity during 15 days of continuous operation. A high feed flowrate demonstrated a clear ability to mitigate fouling-induced performance deterioration in all conditions. A high draw flowrate turned out to be detrimental for fouling propensity since its high reverse solute flux accelerated fouling growth. Applying additional hydraulic pressure during FO operation caused a faster reduction of water flux, and thus feed recovery and water production; however, these drawbacks could be compensated for by a 10% reduction in the required FO membrane area and an additional reduction in RO SEC.
Collapse
Affiliation(s)
- Chulmin Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Thanh-Tin Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Rusnang Syamsul Adha
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW2007, Australia
| | - In S Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea; Global Desalination Research Center, Gwangju Institute of Science and Technology (GIST), 123 Cheomdanwagi-ro, Buk-gu, Gwangju, 61005, South Korea.
| |
Collapse
|
23
|
Blandin G, Ferrari F, Lesage G, Le-Clech P, Héran M, Martinez-Lladó X. Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. MEMBRANES 2020; 10:membranes10100284. [PMID: 33066490 PMCID: PMC7602145 DOI: 10.3390/membranes10100284] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as "soft" concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive.
Collapse
Affiliation(s)
- Gaetan Blandin
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
- Correspondence:
| | - Federico Ferrari
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain;
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Marc Héran
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Xavier Martinez-Lladó
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
| |
Collapse
|
24
|
Artemi A, Chen GQ, Kentish SE, Lee J. The relevance of critical flux concept in the concentration of skim milk using forward osmosis and reverse osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Nanohybrid Membrane Synthesis with Phosphorene Nanoparticles: A Study of the Addition, Stability and Toxicity. Polymers (Basel) 2020; 12:polym12071555. [PMID: 32674304 PMCID: PMC7408299 DOI: 10.3390/polym12071555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Phosphorene is a promising candidate as a membrane material additive because of its inherent photocatalytic properties and electrical conductance which can help reduce fouling and improve membrane properties. The main objective of this study was to characterize structural and morphologic changes arising from the addition of phosphorene to polymeric membranes. Here, phosphorene was physically incorporated into a blend of polysulfone (PSf) and sulfonated poly ether ether ketone (SPEEK) doping solution. Protein and dye rejection studies were carried out to determine the permeability and selectivity of the membranes. Since loss of material additives during filtration processes is a challenge, the stability of phosphorene nanoparticles in different environments was also examined. Furthermore, given that phosphorene is a new material, toxicity studies with a model nematode, Caenorhabditis elegans, were carried out to provide insight into the biocompatibility and safety of phosphorene. Results showed that membranes modified with phosphorene displayed a higher protein rejection, but lower flux values. Phosphorene also led to a 70% reduction in dye fouling after filtration. Additionally, data showed that phosphorene loss was negligible within the membrane matrix irrespective of the pH environment. Phosphorene caused toxicity to nematodes in a free form, while no toxicity was observed for membrane permeates.
Collapse
|
26
|
Insight into organic fouling behavior in polyamide thin-film composite forward osmosis membrane: Critical flux and its impact on the economics of water reclamation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118118] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis. MEMBRANES 2020; 10:membranes10060131. [PMID: 32630495 PMCID: PMC7344726 DOI: 10.3390/membranes10060131] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022]
Abstract
Wastewater reuse as a sustainable, reliable and energy recovery concept is a promising approach to alleviate worldwide water scarcity. However, the water reuse market needs to be developed with long-term efforts because only less than 4% of the total wastewater worldwide has been treated for water reuse at present. In addition, the reclaimed water should fulfill the criteria of health safety, appearance, environmental acceptance and economic feasibility based on their local water reuse guidelines. Moreover, municipal wastewater as an alternative water resource for non-potable or potable reuse, has been widely treated by various membrane-based treatment processes for reuse applications. By collecting lab-scale and pilot-scale reuse cases as much as possible, this review aims to provide a comprehensive summary of the membrane-based treatment processes, mainly focused on the hydraulic filtration performance, contaminants removal capacity, reuse purpose, fouling resistance potential, resource recovery and energy consumption. The advances and limitations of different membrane-based processes alone or coupled with other possible processes such as disinfection processes and advanced oxidation processes, are also highlighted. Challenges still facing membrane-based technologies for water reuse applications, including institutional barriers, financial allocation and public perception, are stated as areas in need of further research and development.
Collapse
|
28
|
Abstract
The use of forward osmosis (FO) for water purification purposes has gained extensive attention in recent years. In this review, we first discuss the advantages, challenges and various applications of FO, as well as the challenges in selecting the proper draw solution for FO, after which we focus on transport limitations in FO processes. Despite recent advances in membrane development for FO, there is still room for improvement of its selective layer and support. For many applications spiral wound membrane will not suffice. Furthermore, a defect-free selective layer is a prerequisite for FO membranes to ensure low solute passage, while a support with low internal concentration polarization is necessary for a high water flux. Due to challenges affiliated to interfacial polymerization (IP) on non-planar geometries, we discuss alternative approaches to IP to form the selective layer. We also explain that, when provided with a defect-free selective layer with good rejection, the membrane support has a dominant influence on the performance of an FO membrane, which can be estimated by the structural parameter (S). We emphasize the necessity of finding a new method to determine S, but also that predominantly the thickness of the support is the major parameter that needs to be optimized.
Collapse
|
29
|
Zhan M, Gwak G, Kim DI, Park K, Hong S. Quantitative analysis of the irreversible membrane fouling of forward osmosis during wastewater reclamation: Correlation with the modified fouling index. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117757] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Dynamical Modeling of Water Flux in Forward Osmosis with Multistage Operation and Sensitivity Analysis of Model Parameters. WATER 2019. [DOI: 10.3390/w12010031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To mathematically predict the behavior of a forward osmosis (FO) process for water recovery, a model was constructed using an asymmetric membrane and glucose as a draw solution, allowing an examination of both phenomenological and process aspects. It was found that the proposed model adequately described the significant physicochemical phenomena that occur in the FO system, including forward water flux, internal concentration polarization (ICP), external concentration polarization (ECP), and reverse solute diffusion (RSD). Model parameters, namely the physiochemical properties of the FO membrane and glucose solutions, were estimated on the basis of experimental and existing data. Through batch FO operations with the estimated parameters, the model was verified. In addition, the influences of ECP and ICP on the water flux of the FO system were investigated at different solute concentrations. Water flux simulation results, which exhibited good agreement with the experimental data, confirmed that ICP, ECP, and RSD had a real impact on water flux and thus must be taken into account in the FO process. With the Latin-hypercube—one-factor-at-a-time (LH–OAT) method, the sensitivity index of diffusivity was at its highest, with a value of more than 40%, which means that diffusivity is the most influential parameter for water flux of the FO system, in particular when dealing with a high-salinity solution. Based on the developed model and sensitivity analysis, the simulation results provide insight into how mass transport affects the performance of an FO system.
Collapse
|
31
|
Zhang M, Yao L, Maleki E, Liao BQ, Lin H. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101686] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Jalab R, Awad AM, Nasser MS, Minier-Matar J, Adham S, Judd SJ. An empirical determination of the whole-life cost of FO-based open-loop wastewater reclamation technologies. WATER RESEARCH 2019; 163:114879. [PMID: 31336205 DOI: 10.1016/j.watres.2019.114879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 07/16/2019] [Indexed: 05/26/2023]
Abstract
Over the past 5-10 years it has become apparent that the significant energy benefit provided by forward osmosis (FO) for desalination arises only when direct recovery of the permeate product from the solution used to transfer the water through the membrane (the draw solution) is obviated. These circumstances occur specifically when wastewater purification is combined with saline water desalination. It has been suggested that, for such an "open loop" system, the FO technology offers a lower-cost water reclamation option than the conventional process based on reverse osmosis (RO). An analysis is presented of the costs incurred by this combined treatment objective. Three process schemes are considered combining the FO or RO technologies with membrane bioreactors (MBRs): MBR-RO, MBR-FO-RO and osmotic MBR (OMBR)-RO. Calculation of the normalised net present value (NPV/permeate flow) proceeded through developing a series of empirical equations based on available individual capital and operating cost data. Cost curves (cost vs. flow capacity) were generated for each option using literature MBR and RO data, making appropriate assumptions regarding the design and operation of the novel FO and OMBR technologies. Calculations revealed the MBR-FO-RO and OMBR-RO schemes to respectively offer a ∼20% and ∼30% NPV benefit over the classical MBR-RO scheme at a permeate flow of 10,000 m3 d-1, provided the respective schemes are applied to high and low salinity wastewaters. Outcomes are highly sensitive to the FO or OMBR flux sustained: the relative NPV benefit (compared to the classical system) of the OMBR-RO scheme declined from 30% to ∼4% on halving the OMBR flux from a value of 6 L m-2. h-1.
Collapse
Affiliation(s)
- Rem Jalab
- Gas Processing Centre, College of Engineering, Qatar University, Doha, Qatar
| | - Abdelrahman M Awad
- Gas Processing Centre, College of Engineering, Qatar University, Doha, Qatar
| | - Mustafa S Nasser
- Gas Processing Centre, College of Engineering, Qatar University, Doha, Qatar.
| | - Joel Minier-Matar
- ConocoPhillips Global Water Sustainability Centre, Qatar Science & Technology Park, Doha, Qatar
| | - Samer Adham
- ConocoPhillips Global Water Sustainability Centre, Qatar Science & Technology Park, Doha, Qatar
| | - Simon J Judd
- Cranfield Water Science Institute, Cranfield University, Beds, UK.
| |
Collapse
|
33
|
Oh SH, Jeong S, Kim IS, Shon HK, Jang A. Removal behaviors and fouling mechanisms of charged antibiotics and nanoparticles on forward osmosis membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:385-393. [PMID: 31254754 DOI: 10.1016/j.jenvman.2019.06.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Fouling and rejection mechanisms of both charged antibiotics (ABs) and nanoparticles (NPs) were determined using a negatively-charged polyamide thin film composite forward osmosis (FO) flat sheet membrane. Two types of ABs and NPs were selected as positively and negatively charged foulants at pH 8. The ABs did not cause significant membrane fouling, but the extent of fouling and rejection changed based on the electrostatic attraction or repulsion forces. The addition of opposite charged AB and NP resulted in a decline of the membrane flux by 11.0% but a 6.5% AB average rejection efficiency improvement. On the other hand, mixing of like-charged ABs and NPs generated repulsive forces that improved average rejection efficiency about 5.5% but made no changes in the membrane flux. In addition, NPs and ABs were mixed and tested at various concentrations and pH levels to rectify the behavior of ABs. The aggregate size and removal efficiency were observed to vary with the change in the electron double layer of the mixture. It can help to make the strategy to control the ABs in the FO process and consequently it enables the FO process to produce environmentally safe effluent.
Collapse
Affiliation(s)
- Sang-Hun Oh
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Sanghyun Jeong
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - In S Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea; Global Desalination Research Center, Gwangju Institute of Science and Technology (GIST), 123 Cheomdanwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
34
|
Recent Progresses of Forward Osmosis Membranes Formulation and Design for Wastewater Treatment. WATER 2019. [DOI: 10.3390/w11102043] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Production of potable water or reclaimed water with higher quality are in demand to address water scarcity issues as well as to meet the expectation of stringent water quality standards. Forward osmosis (FO) provides a highly promising platform for energy-efficient membrane-based separation technology. This emerging technology has been recognized as a potential and cost-competitive alternative for many conventional wastewater treatment technologies. Motivated by its advantages over existing wastewater treatment technologies, the interest of applying FO technology for wastewater treatment has increased significantly in recent years. This article focuses on the recent developments and innovations in FO for wastewater treatment. An overview of the potential of FO in various wastewater treatment application will be first presented. The contemporary strategies used in membrane designs and fabrications as well as the efforts made to address membrane fouling are comprehensively reviewed. Finally, the challenges and future outlook of FO for wastewater treatment are highlighted.
Collapse
|
35
|
Systematic insight into the short-term and long-term effects of magnetic microparticles and nanoparticles on critical flux in membrane bioreactors. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|