1
|
Sinahroy A, Kim SH, Chung CM. Predicting membrane fouling in membrane bioreactor systems using viscosity: Impacts of environmental conditions and antifouling agents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122868. [PMID: 39418706 DOI: 10.1016/j.jenvman.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
This study attempted to establish a viscosity-based prediction of membrane fouling. Various factors, including pH, temperature, MLSS concentration, and the addition of NaOCl and citric acid were identified, and their effect on sludge properties such as EPS concentration and wastewater viscosity were estimated. There was a very good correlation between these parameters with EPS concentration and viscosity. The increase in EPS concentration and viscosity significantly affected the membrane flux and filtration time for all the different experimental conditions. However, there were fluctuations in results obtained from experiments related to change in pH, including the addition of antifouling agents NaOCl and citric acid. Such variations accompanied by low correlation in these experiments indicated the influence of pH that may pose difficulty in a viscosity-based estimation of membrane fouling. However, if such large variations in operating conditions could be avoided and the reactor could be operated under optimal conditions, a much better correlation could be obtained between viscosity and membrane fouling. Data from continuously operated MBR systems support this observation, where even a linear equation defining relation between viscosity and transmembrane pressure (TMP) could be obtained. Overall, findings from this study provide a great insight into membrane fouling prediction using viscosity-based methods.
Collapse
Affiliation(s)
- Arindam Sinahroy
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Seung Hui Kim
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Chong Min Chung
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea.
| |
Collapse
|
2
|
Xu B, Gao W, Liao B, Bai H, Qiao Y, Turek W. A Review of Temperature Effects on Membrane Filtration. MEMBRANES 2023; 14:5. [PMID: 38248695 PMCID: PMC10819527 DOI: 10.3390/membranes14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Membrane technology plays a vital role in drinking water and wastewater treatments. Among a number of factors affecting membrane performance, temperature is one of the dominant factors determining membrane performance. In this review, the impact of temperature on membrane structure, fouling, chemical cleaning, and membrane performance is reviewed and discussed with a particular focus on cold temperature effects. The findings from the literature suggest that cold temperatures have detrimental impacts on membrane structure, fouling, and chemical cleaning, and thus could negatively affect membrane filtration operations and performance, while warm and hot temperatures might expand membrane pores, increase membrane flux, improve membrane chemical cleaning efficiency, and interfere with biological processes in membrane bioreactors. The research gaps, challenges, and directions of temperature effects are identified and discussed indepth. Future studies focusing on the impact of temperature on membrane processes used in water and wastewater treatment and the development of methods that could reduce the adverse effect of temperature on membrane operations are needed.
Collapse
Affiliation(s)
- Bochao Xu
- Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada;
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Wa Gao
- Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada;
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Hao Bai
- Department of Mechanical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; (H.B.); (Y.Q.)
| | - Yuhang Qiao
- Department of Mechanical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; (H.B.); (Y.Q.)
| | - Walter Turek
- Environment Division, City of Thunder Bay, Victoriaville Civic Centre, 111 Syndicate Ave S., Thunder Bay, ON P7E 6S4, Canada;
| |
Collapse
|
3
|
Ng YS, Chan DJC. Thermal Effect on Algae, Biofilm and Their Composition Towards Membrane Distillation Unit: A Mini-review. Mol Biotechnol 2023:10.1007/s12033-023-00853-5. [PMID: 37651079 DOI: 10.1007/s12033-023-00853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Membrane distillation (MD) has lower operating temperature and potential to recycle waste heat for desalination which catches much attention of the researchers in the recent years. However, the biofouling is still a challenging hurdle to be overcome for such applications. The microbial growth rate, secretion and biofilm formation are sensitive to heat. Membrane distillation is a thermally driven separation, so the increase of temperature in the seawater feed could influence the extent of biofouling on the unit parts. In this review, we present the effect of temperature on algal growth, the range of temperature the microbes, marine algae and planktons able to survive and the changes to those planktons once exceed the critical temperature. Thermal effect on the biofilm, its composition and properties are discussed as well, with association of the biofilm secreting microbes, but the study related to membrane distillation unit seems to be lacking and MD biofouling factors are not fully understood. Characterization of the algae, biofilm and EPS that govern biofouling are discussed. This information not only will help in designing future studies to fill up the knowledge gaps in biofouling of membrane distillation, but also to some extent, assist in pointing out possible fouling factors and predicting the degree of biofouling in the membrane distillation unit.
Collapse
Affiliation(s)
- Yin Sim Ng
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
4
|
Ng YS, Ragupathy S, Shau Hwai AT, Khoo KS, Chieh Chan DJ. Evaluation of membrane fouling at elevated temperature impacted by algal organic matter. CHEMOSPHERE 2023; 310:136790. [PMID: 36220430 DOI: 10.1016/j.chemosphere.2022.136790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Membrane distillation (MD) is a thermally driven technology applied in desalination and water reuse with utilisation of sustainable energy. However, algal organic matter (AOM) could foul membrane critically and plague MD's long-term operational stability. In this study, the soluble extracellular polymeric substance (sEPS) and intracellular organic matter with bound extracellular polymeric substance (IOM + bEPS) of two algal species (Amphora coffeaeformis and Navicula incerta) were exposed to 60 °C, 70 °C and 80 °C for 8 h with polypropylene hydrophobic membrane, simulating heated AOMs contacted with membrane inside MD unit, to study the temperature effect on membrane fouling. The dissolved carbohydrate and protein in the sEPS and IOM + bEPS samples generally increased after being heated. Heating caused cell lysis and the release and dissolution of carbohydrate and protein from sEPS, IOM and bEPS into water. As heating temperature increased, the carbohydrate release from the AOM usually increased. The contact angle of membrane contacted with sEPS and IOM + bEPS reduced significantly after heat treatment. The reduction in IOM + bEPS was larger than sEPS, in line with SEM analysis, indicating membrane surfaces and pores with IOM + bEPS fouled more severely than sEPS. It is due to higher hydrophobicity in IOM + bEPS causing adherence to membrane and presence of amphiphiles. High protein, lipid, and saturated fats proportions also cause severe fouling. SEM-EDX analysis indicated presence of O, Na, Cl and Mg elements, pointing to carbohydrate and lipids, and salt trapped in foulants. AOM heating and composition had direct effect to the membrane integrity, dictating severity of fouling in MD operations.
Collapse
Affiliation(s)
- Yin Sim Ng
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Sukdarsanan Ragupathy
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Aileen Tan Shau Hwai
- Centre for Marine & Coastal Studies (CEMACS), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
5
|
Harimawan A, Wonoputri V, Ariel J, Julian H. Biofouling control of membrane distillation for seawater desalination: Effect of air-backwash and chemical cleaning on biofouling formation. BIOFOULING 2022; 38:889-902. [PMID: 36382389 DOI: 10.1080/08927014.2022.2146496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
This study explored the applicability of chemical cleaning and air-backwash to alleviate biofouling on seawater membrane distillation (SWMD). Membrane performance and wettability properties maintained at optimum duration and frequency of the treatments, as indicated by low permeate conductivity throughout the tests. The cleaning of the membrane using 2% NaOH by immersing the membrane for 30 min after 240 min operation removed the biofouling layer, indicated by low permeate conductivity of 370 µScm-1 after cleaning. However, more frequent membrane cleaning led to membrane damage, more severe wetting, and membrane hydrophobicity reduction. Ten-second air-backwash after 240 min of operation was also effective in controlling the biofouling, particularly when conducted at air pressure of 1 bar. More frequent air-backwash resulted in more aggravated inorganic fouling and accelerated biofouling formation due to the recurring introduction of air, leading to rapid membrane wetting.
Collapse
Affiliation(s)
- Ardiyan Harimawan
- Chemical Engineering Department, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Vita Wonoputri
- Chemical Engineering Department, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Jonathan Ariel
- Chemical Engineering Department, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Helen Julian
- Chemical Engineering Department, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| |
Collapse
|
6
|
Elcik H, Alpatova A, Gonzalez-Gil G, Blankert B, Farhat N, Amin NA, Vrouwenvelder JS, Ghaffour N. Elucidating biofouling over thermal and spatial gradients in seawater membrane distillation in hot climatic conditions. WATER RESEARCH 2022; 223:118983. [PMID: 35988337 DOI: 10.1016/j.watres.2022.118983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Biofouling is a hurdle of seawater desalination that increases water costs and energy consumption. In membrane distillation (MD), biofouling development is complicated due to the temperature effect that adversely affects microbial growth. Given the high relevance of MD to regions with abundant warm seawater, it is essential to explore the biofouling propensity of microbial communities with higher tolerance to elevated temperature conditions. This study presents a comprehensive analysis of the spatial and temporal biofilm distribution and associated membrane fouling during direct contact MD (DCMD) of the Red Sea water. We found that structure and composition of the biofilm layer played a significant role in the extent of permeate flux decline, and biofilms that built up at 45°C had lower bacterial concentration but higher extracellular polymeric substances (EPS) content as compared to biofilms that formed at 55 °C and 65°C. Pore wetting and bacterial passage to the permeate side were initially observed but slowed down as operating time increased. Intact cells in biofilms dominated over the damaged cells at any tested condition emphasizing the high adaptivity of the Red Sea microbial communities to elevated feed temperatures. A comparison of microbial abundance revealed a difference in bacterial distribution between the feed and biofilm samples. A shift in the biofilm microbial community and colonization of the membrane surface with thermophilic bacteria with the feed temperature increase was observed. The results of this study improve our understanding of biofouling propensity in MD that utilizes temperature-resilient feed waters.
Collapse
Affiliation(s)
- Harun Elcik
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia
| | - Alla Alpatova
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia
| | - Graciela Gonzalez-Gil
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia
| | - Bastiaan Blankert
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia
| | - Nadia Farhat
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia
| | - Najat A Amin
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia; Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia; Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 6900, Thuwal 23955, Saudi Arabia.
| |
Collapse
|
7
|
Costa FC, Fortes AR, Braga CD, Arcanjo GS, Grossi L, Mounteer AH, Moravia WG, Koch K, Drewes JE, Ricci BC, Amaral MC. Assessment of a hybrid UV-LED-membrane distillation process: Focus on fouling mitigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Chang H, Kwon D, Kim J. Rejections and membrane fouling of submerged direct contact hollow-fiber membrane distillation as post-treatment for anaerobic fluidized bed bioreactor treating domestic sewage. CHEMOSPHERE 2022; 296:133964. [PMID: 35167838 DOI: 10.1016/j.chemosphere.2022.133964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, submerged direct contact membrane distillation (SDCMD) with a hollow-fiber membrane was applied as a post-treatment for an anaerobic fluidized bed bioreactor (AFBR) treating domestic sewage. The rejection efficiency of organic contaminants and nutrients, such as ammonia nitrogen and phosphate in SDCMD were investigated. As the transmembrane temperature difference increased, the permeate flux of SDCMD increased, while the rejection efficiency of ammonia nitrogen decreased. Regardless of the transmembrane temperature applied in this study, rejection efficiencies greater than 90% were achieved for organics and phosphate by SDCMD treatment of the AFBR effluent. A higher solution pH resulted in a lower ammonia nitrogen rejection efficiency, probably because nitrogen dominantly exists in the gaseous form and can easily pass through the hollow-fiber membrane. Long-term operation with the integrated AFBR-SDCMD process over 50 d at a transmembrane temperature of 30 °C and solution pH of 5.5 showed rejection efficiencies of 98.7%, 98.1%, and 90.5% for ammonia nitrogen, phosphate, and dissolved organic carbon (DOC), respectively. During the entire integrated process for treating domestic sewage, both DOC and nutrients present in the bulk solution of the SDCMD reactor were effectively removed to a concentrate. However, the permeate flux produced by the SDCMD membrane decreased over time, mainly because of the progressive biofouling.
Collapse
Affiliation(s)
- Hari Chang
- Department of Environmental Engineering, Program of Environmental and Polymer Engineering, Inha University, Inharo 100, Michuhogu, Incheon, Republic of Korea
| | - Daeeun Kwon
- Department of Environmental Engineering, Program of Environmental and Polymer Engineering, Inha University, Inharo 100, Michuhogu, Incheon, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Program of Environmental and Polymer Engineering, Inha University, Inharo 100, Michuhogu, Incheon, Republic of Korea.
| |
Collapse
|
9
|
Liu C, Zhu L, Ji R. Direct contact membrane distillation (DCMD) process for simulated brackish water treatment: An especial emphasis on impacts of antiscalants. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Liu C, Zhu L, Pan M. Seasonal shift of water quality in China Yangtze River and its impacts on membrane fouling development during the drinking water supply by membrane distillation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152298. [PMID: 34896505 DOI: 10.1016/j.scitotenv.2021.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) technique is increasingly regarded as a promising process for drinking water supply and wastewater treatment owing to its great water purification and usage of renewable energy. Like other membrane separation processes, the membrane fouling issue is widely considered as the main obstacle for real applications of large-scale MD systems. Feedwater characteristics, as the predominant factors for membrane fouling layer formation, mostly determined the membrane fouling trend of MD. Thus the impacts of seasonal shifts of initial feedwater quality on the MD membrane fouling were detailedly researched in this study, and the biofilm development mechanism was especially explored. The bacterial community structure of membrane biofilms was clearly clarified in MD runs of Yangtze River waters that collected in four seasons. The results revealed that the winter run posed a quite sharp flux drop, while a relatively milder flux decline behaviour was seen for other groups despite of the higher bacteria concentration of initial feedwaters. The poorer water quality in winter induced the establishment of a rather thick biofilm on the MD membrane, in which the biofilm-forming bacteria (Gammaproteobacteria and Alphaproteobacteria) and organic matters (EPS) were remarkably observed. Comparatively, a relatively thin biofilm containing abundant live cells and fewer organics finally formed in summer and autumn runs, causing a mitigated flux decline trend. Hence, it can be inferred that the membrane flux decline of MD was likely to be more sensitive to the organic attachment on the membrane in comparison with the bacteria adhesion. Finally, a three-phase pretreatment method was suggested for MD fouling control, including heating course, sterilization course, and filtration course.
Collapse
Affiliation(s)
- Chang Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Mei Pan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, China
| |
Collapse
|
11
|
Nadeem K, Alliet M, Plana Q, Bernier J, Azimi S, Rocher V, Albasi C. Modeling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151109. [PMID: 34688739 DOI: 10.1016/j.scitotenv.2021.151109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) removal from the domestic wastewater is required to counter the eutrophication in receiving water bodies and is mandated by the regulatory frameworks in several countries with discharge limits within 1-2mgPL-1. Operating at higher sludge retention time (SRT) and higher biomass concentration than the conventional activated sludge process (CASP), membrane bioreactors (MBRs) are able to remove 70-98% phosphorus without addition of coagulant. In full-scale facilities, enhanced biological phosphorus removal (EBPR) is assisted by the addition of metal coagulant to ensure >95% P-removal. MBRs are successfully used for super-large-scale wastewater treatment facilities (capacity >100,000 m3d-1). This paper documents the knowledge of P-removal modeling from lab to full-scale submerged MBRs and assesses the existing mathematical models for P-removal from domestic wastewater. There are still limited studies involving integrated modeling of the MBRs (full/super large-scale), considering the complex interactions among biology, chemical addition, filtration, and fouling. This paper analyses the design configurations and the parameters affecting the biological and chemical P-removal in MBRs to understand the P-removal process sensitivity and their implications for the modeling studies. Furthermore, it thoroughly reviews the applications of bio-kinetic and chemical precipitation models to MBRs for assessing their effectiveness with default stoichiometric and kinetic parameters and the extent to which these parameters have been calibrated/adjusted to simulate the P-removal successfully. It also presents a brief overview and comparison of seven (7) chemical precipitation models, along with a quick comparison of commercially available simulators. In addition to advantages associated with chemical precipitation for P-removal, its role in changing the relative abundance of the microbial community responsible for P-removal and denitrification and the controversial role in fouling mitigation/increase are discussed. Lastly, it encompasses several coagulant dosing control systems and their applications in the pilot to full-scale facilities to save coagulants and optimize the P-removal performance.
Collapse
Affiliation(s)
- Kashif Nadeem
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Queralt Plana
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France
| | - Jean Bernier
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France
| | - Sam Azimi
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France.
| | - Vincent Rocher
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France.
| | - Claire Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
12
|
Ngo MTT, Diep BQ, Sano H, Nishimura Y, Boivin S, Kodamatani H, Takeuchi H, Sakti SCW, Fujioka T. Membrane distillation for achieving high water recovery for potable water reuse. CHEMOSPHERE 2022; 288:132610. [PMID: 34678340 DOI: 10.1016/j.chemosphere.2021.132610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Achieving high water recovery using reverse osmosis membranes is challenging during water recycling because the increased concentrations of organics and inorganics in wastewater can cause rapid membrane fouling, necessitating frequent cleaning using chemical agents. This study evaluated the potential of membrane distillation to purify reverse osmosis-concentrated wastewater and achieve 98% overall water recovery for potable water reuse. The results indicate that membrane fouling during membrane distillation treatment was low (4% reduction in permeability) until 98% water recovery. In contrast, membrane fouling during reverse osmosis treatments was high (73% reduction in permeability) before reaching 90% water recovery. Furthermore, membrane distillation showed superior performance in removing dissolved ions (99.9%) from wastewater as compared with reverse osmosis (98.9%). However, although membrane distillation removed most trace organic chemicals tested in this study, a negligible rejection (11%) was observed for N-nitrosodimethylamine, a disinfection byproduct regulated in potable water reuse. In contrast, RO treatment exhibited a high removal of N-nitrosodimethylamine (70%). Post-treatment (e.g., advanced oxidation) after reverse osmosis and membrane distillation may be needed to comply with the N-nitrosodimethylamine regulations. Overall, the membrane distillation process had the capacity to purify reverse osmosis concentrate with insignificant membrane fouling.
Collapse
Affiliation(s)
- My Thi Tra Ngo
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Binh Quoc Diep
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Hideaki Sano
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yasuhisa Nishimura
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Sandrine Boivin
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Hitoshi Kodamatani
- Graduate School of Science and Engineering, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Haruka Takeuchi
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, 520-0811, Japan
| | - Satya Candra Wibawa Sakti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, 60115, Indonesia; Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, 60115, Indonesia
| | - Takahiro Fujioka
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
13
|
Liu C, Zhu L, Ji R, Xiong H. Zero liquid discharge treatment of brackish water by membrane distillation system: Influencing mechanism of antiscalants on scaling mitigation and biofilm formation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Roles of initial bacterial attachment and growth in the biofouling development on the microfiltration membrane: From viewpoints of individual cell and interfacial interaction energy. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
16
|
Chen L, Wang Y, Chen Z, Cai Z. The fouling layer development on MD membrane for water treatments: An especial focus on the biofouling progress. CHEMOSPHERE 2021; 264:128458. [PMID: 33039691 DOI: 10.1016/j.chemosphere.2020.128458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/04/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the fouling development of membrane distillation (MD) when treating different feed waters were taken from three local water bodies: Xuanwu Lake, Nan Lake and Qinhuai River. Trends of flux decline could be divided into three phases including a similar rapid decline in first phase, a slow decline in phase II, while significant difference was observed in the last phase. It could be seen that inorganic matters in feed waters had some influences on the attachment of salt crystals to membrane, mainly in the form of CaCO3. Furthermore, the biovolume exhibited little difference but the amount of extracellular polymeric substances (EPS) was distinct in the three systems. 16S rRNA revealed that although the microbial communities in feed waters had different structures, they on-membrane microbes shared the same dominant communities in the early stage due to the same growth environment including Tepidimonas, Meiothermus, OLB14_norank, Env.OPS 17_norank and Schlegelella with a relatively stable proportion of 63.5%-68.0%. However, at the later operational phase, the bacteria composition was changed with community succession, and Armatimonadetes_norank, Hydrogenophilaceae_uncultured and Methyloversatilis respectively thrived on the three scaling membrane surfaces which was correlated with the concentration of feed water, resulting the influence of inorganic substances on microbial growth was enhanced. A result obviously suggested that bacteria had great influence on the degree of flux decline due to their structure and property, especially at the later operational phase. It would be helpful to explore the structure and potential function of dominant communities on membranes and provide basic theory for the treatment of microbial pollution.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yuchen Wang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Zaiyu Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Zongting Cai
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield City, S1 3JD, United Kingdom
| |
Collapse
|
17
|
Liu C, Zhu L, Chen L. Effect of salt and metal accumulation on performance of membrane distillation system and microbial community succession in membrane biofilms. WATER RESEARCH 2020; 177:115805. [PMID: 32311577 DOI: 10.1016/j.watres.2020.115805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Membrane distillation (MD) works as a potential technology for the "zero liquid discharge" water treatment owing to its high concentration brine tolerance. The continuous accumulation of salts and metals in the MD system during the "zero liquid discharge" water treatment inevitably posed remarkable impacts on the biofilm formation as well as the MD performance. Hence, the biofouling mechanism of MD was deeply researched in this study with an emphasis on the roles of salt-stress (NaCl) and metal-stress (Zn and Fe) in biofilm development. The membrane flux decline of MD was effectively mitigated by the appearance of NaCl and ZnO, while that was significantly aggravated under the metal-stress of Fe. Considering the serious membrane scaling caused by NaCl crystals, a sharp flux decline was seen for the NaCl group during the later stage of MD operation. Basing on the 16S rDNA and 16S rRNA analysis, heat-stress, salt-stress, and metal-stress all posed certain impacts on the biofouling development in the MD system, and a more remarkable influence was observed for metal-stress. Under the salt-stress from NaCl, a thin biofilm containing high biovolume of dead cells finally formed, in which the bacterial community mainly consisted of halotolerant and thermophile species. Owing to the Zn2+-stress and oxidation-stress mechanisms of ZnO, the bacteria in the MD system were largely dead and live bacterial community in biofilms was dominated by some gram-negative species. Under the metal-stress from Fe, a rather thick biofilm containing higher biovolume of live cells clearly developed, in which the prevailing species could secret large amounts of EPS and accumulate metabolites around cells as biological surfactants, inducing aggravated membrane biofouling and high risk of membrane wetting.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
18
|
Liu C, Zhu L, Chen L. Mechanism of biofilm formation on a hydrophobic polytetrafluoroethylene membrane during the purification of surface water using direct contact membrane distillation (DCMD), with especial interest in the feed properties. BIOFOULING 2020; 36:14-31. [PMID: 31928216 DOI: 10.1080/08927014.2019.1710136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
The impact of feed water quality on biofilm formation during membrane distillation (MD) was investigated in this study, particularly emphasizing the interrelationship between organics, salts, and microbes. Two types of typical natural surface waters in Nanjing, China, were chosen as feed solutions for long-term MD operation, including the Qinhuai River and Xuanwu Lake. The biofilms that developed under different feed water qualities exhibited distinct Foulant compositions and structures, causing different flux decline trends for the MD system. Accordingly, two typical patterns of biofilm formation were suggested for the MD operation of the two different kinds of surface waters in this study. Organics from a primal feed solution and dead bacteria were the key to the establishment of a biofilm on the membrane, and this needs to be effectively removed from the MD system through pre-treatment and process control strategies. Finally, a feasible strategy for MD biofouling control was suggested.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
19
|
Jiang L, Chen L, Zhu L. Electrically conductive membranes for anti-biofouling in membrane distillation with two novel operation modes: Capacitor mode and resistor mode. WATER RESEARCH 2019; 161:297-307. [PMID: 31203035 DOI: 10.1016/j.watres.2019.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/29/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the anti-biofouling efficacy of capacitor mode and resistor mode in membrane distillation (MD). Polytetrafluoroethylene (PTFE) membrane coated with carbon nanotube (CNT) was adopted as the electrically conductive membrane. The biofouling formation on the pre-treatment membrane was systematically analyzed, and the results showed that both operation modes had obvious inhabitation on bacteria, especially the capacitor mode exhibited stronger prevention capability on biomass accumulation than resistor mode. NMDs analysis of microbial communities further revealed that the anti-biofouling effect mainly occurred on the membrane surface, and gram-positive biomarkers which can survive better in external electric field was distinctively found in capacitor mode through LEfSE analysis. Hypothesis was introduced to explain the anti-fouling function of two modes that in the capacitor mode, the competitive electrostatic repulsion of bacteria cells on negative electrode associated by the cell-disruption effect of electro-catalyzed reactive oxygen species (ROS) generation, while the anti-fouling function of resistor mode was a result of temperature increment on membrane surface caused by Joule heating effects. This article attempts to provide an insight of anti-fouling mechanism of electric field applied in MD and to prove the feasibility of above-mentioned operation modes as non-chemical methods for optimization of membrane-based water treatment process.
Collapse
Affiliation(s)
- Longjie Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|