1
|
Hu Y, Chen M, Pu J, Chen S, Li Y, Zhang H. Enhancing phosphorus source apportionment in watersheds through species-specific analysis. WATER RESEARCH 2024; 253:121262. [PMID: 38367374 DOI: 10.1016/j.watres.2024.121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Phosphorus (P) is a pivotal element responsible for triggering watershed eutrophication, and accurate source apportionment is a prerequisite for achieving the targeted prevention and control of P pollution. Current research predominantly emphasizes the allocation of total phosphorus (TP) loads from watershed pollution sources, with limited integration of source apportionment considering P species and their specific implications for eutrophication. This article conducts a retrospective analysis of the current state of research on watershed P source apportionment models, providing a comprehensive evaluation of three source apportionment methods, inventory analysis, diffusion models, and receptor models. Furthermore, a quantitative analysis of the impact of P species on watersheds is carried out, followed by the relationship between P species and the P source apportionment being critically clarified within watersheds. The study reveals that the impact of P on watershed eutrophication is highly dependent on P species, rather than absolute concentration of TP. Current research overlooking P species composition of pollution sources may render the acquired results of source apportionment incapable of assessing the impact of P sources on eutrophication accurately. In order to enhance the accuracy of watershed P pollution source apportionment, the following prospectives are recommended: (1) quantifying the P species composition of typical pollution sources; (2) revealing the mechanisms governing the migration and transformation of P species in watersheds; (3) expanding the application of traditional models and introducing novel methods to achieve quantitative source apportionment specifically for P species. Conducting source apportionment of specific species within a watershed contributes to a deeper understanding of P migration and transformation, enhancing the precise of management of P pollution sources and facilitating the targeted recovery of P resources.
Collapse
Affiliation(s)
- Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Mengli Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jia Pu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yao Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
2
|
He Y, Gong A, Osabutey A, Gao T, Haleem N, Yang X, Liang P. Emerging electro-driven technologies for phosphorus enrichment and recovery from wastewater: A review. WATER RESEARCH 2023; 246:120699. [PMID: 37820510 DOI: 10.1016/j.watres.2023.120699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
The recovery of phosphorus from wastewater is a critical step in addressing the scarcity of phosphorus resources. Electro-driven technologies for phosphorus enrichment have gathered significant attention due to their inherent advantages, such as mild operating conditions, absence of secondary pollution, and potential integration with other technologies. This study presents a comprehensive review of recent advancements in the field of phosphorus enrichment, with a specific focus on capacitive deionization and electrodialysis technologies. It highlights the underlying principles and effectiveness of electro-driven techniques for phosphorus enrichment while systematically comparing energy consumption, enrichment rate, and concentration factor among different technologies. Furthermore, the study provides a thorough analysis of the capacity of various technologies to selectively enrich phosphorus and proposes several methods and strategies to enhance selectivity. These insights offer valuable guidance for advancing the future development of electrochemical techniques with enhanced efficiency and effectiveness in phosphorus enrichment from wastewater.
Collapse
Affiliation(s)
- Yunfei He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ao Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Augustina Osabutey
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Tie Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Noor Haleem
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Xufei Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA.
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Pismenskaya N, Rybalkina O, Solonchenko K, Pasechnaya E, Sarapulova V, Wang Y, Jiang C, Xu T, Nikonenko V. How Chemical Nature of Fixed Groups of Anion-Exchange Membranes Affects the Performance of Electrodialysis of Phosphate-Containing Solutions? Polymers (Basel) 2023; 15:polym15102288. [PMID: 37242863 DOI: 10.3390/polym15102288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Innovative ion exchange membranes have become commercially available in recent years. However, information about their structural and transport characteristics is often extremely insufficient. To address this issue, homogeneous anion exchange membranes with the trade names ASE, CJMA-3 and CJMA-6 have been investigated in NaxH(3-x)PO4 solutions with pH 4.4 ± 0.1, 6.6 and 10.0 ± 0.2, as well as NaCl solutions with pH 5.5 ± 0.1. Using IR spectroscopy and processing the concentration dependences of the electrical conductivity of these membranes in NaCl solutions, it was shown that ASE has a highly cross-linked aromatic matrix and mainly contains quaternary ammonium groups. Other membranes have a less cross-linked aliphatic matrix based on polyvinylidene fluoride (CJMA-3) or polyolefin (CJMA-6) and contain quaternary amines (CJMA-3) or a mixture of strongly basic (quaternary) and weakly basic (secondary) amines (CJMA-6). As expected, in dilute solutions of NaCl, the conductivity of membranes increases with an increase in their ion-exchange capacity: CJMA-6 < CJMA-3 << ASE. Weakly basic amines appear to form bound species with proton-containing phosphoric acid anions. This phenomenon causes a decrease in the electrical conductivity of CJMA-6 membranes compared to other studied membranes in phosphate-containing solutions. In addition, the formation of the neutral and negatively charged bound species suppresses the generation of protons by the "acid dissociation" mechanism. Moreover, when the membrane is operated in overlimiting current modes and/or in alkaline solutions, a bipolar junction is formed at the CJMA- 6/depleted solution interface. The CJMA-6 current-voltage curve becomes similar to the well-known curves for bipolar membranes, and water splitting intensifies in underlimiting and overlimiting modes. As a result, energy consumption for electrodialysis recovery of phosphates from aqueous solutions almost doubles when using the CJMA-6 membrane compared to the CJMA-3 membrane.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Olesya Rybalkina
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Evgeniia Pasechnaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Veronika Sarapulova
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Yaoming Wang
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chenxiao Jiang
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Victor Nikonenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
4
|
Butylskii D, Troitskiy V, Chuprynina D, Kharchenko I, Ryzhkov I, Apel P, Pismenskaya N, Nikonenko V. Selective Separation of Singly Charged Chloride and Dihydrogen Phosphate Anions by Electrobaromembrane Method with Nanoporous Membranes. MEMBRANES 2023; 13:membranes13050455. [PMID: 37233516 DOI: 10.3390/membranes13050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl- (always present in phosphorus-containing waters) and H2PO4- anions. Separated ions of the same charge sign move in an electric field through the pores of a nanoporous membrane to the corresponding electrode, while a commensurate counter-convective flow in the pores is created by a pressure drop across the membrane. It has been shown that EBM technology provides high fluxes of ions being separated across the membrane as well as a high selectivity coefficient compared to other membrane methods. During the processing of solution containing 0.05 M NaCl and 0.05 M NaH2PO4, the flux of phosphates through a track-etched membrane can reach 0.29 mol/(m2×h). Another possibility for separation is the EBM extraction of chlorides from the solution. Its flux can reach 0.40 mol/(m2×h) through the track-etched membrane and 0.33 mol/(m2×h) through a porous aluminum membrane. The separation efficiency can be very high by using both the porous anodic alumina membrane with positive fixed charges and the track-etched membrane with negative fixed charges due to the possibility of directing the fluxes of separated ions in opposite sides.
Collapse
Affiliation(s)
- Dmitrii Butylskii
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Vasiliy Troitskiy
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Daria Chuprynina
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Ivan Kharchenko
- Institute of Computational Modeling SB RAS, 50-44 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ilya Ryzhkov
- Institute of Computational Modeling SB RAS, 50-44 Akademgorodok, 660036 Krasnoyarsk, Russia
- Siberian Federal University, 79 Svobodny, 660041 Krasnoyarsk, Russia
| | - Pavel Apel
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| |
Collapse
|
5
|
AlJaberi FY, Ahmed SA, Makki HF, Naje AS, Zwain HM, Salman AD, Juzsakova T, Viktor S, Van B, Le PC, La DD, Chang SW, Um MJ, Ngo HH, Nguyen DD. Recent advances and applicable flexibility potential of electrochemical processes for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161361. [PMID: 36610626 DOI: 10.1016/j.scitotenv.2022.161361] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study examined >140 relevant publications from the last few years (2018-2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending on the in-situ conditions, as evidenced by surveyed articles and statistical analyses. This work also examines the variables affecting the elimination efficacy, such as the applied current, reaction time, pH, type of electrolyte, initial pollutant concentration, and energy consumption. In addition, owing to its efficacy in removing toxins, the hybrid activity showed a good percentage among the studies reviewed. The promise of each wastewater treatment technology depends on the type of contamination. In some cases, EO requires additives to oxidise the pollutants. EF and EFN eliminated lightweight organic pollutants. ED has been used to treat saline water. Compared to other methods, EC has been extensively employed to remove a wide variety of contaminants.
Collapse
Affiliation(s)
- Forat Yasir AlJaberi
- Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq.
| | - Shaymaa A Ahmed
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Hasan F Makki
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ahmed Samir Naje
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Haider M Zwain
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Ali Dawood Salman
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary; Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Iraq
| | - Tatjána Juzsakova
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - Sebestyen Viktor
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - B Van
- Institute of Research and Development, Duy Tan University, 550000 Danang, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, 550000 Danang, Viet Nam.
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Viet Nam.
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi 100000, Viet Nam
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Myoung-Jin Um
- Department of Civil Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
6
|
Barros KS, Carvalheira M, Marreiros BC, Reis MAM, Crespo JG, Pérez-Herranz V, Velizarov S. Donnan Dialysis for Recovering Ammonium from Fermentation Solutions Rich in Volatile Fatty Acids. MEMBRANES 2023; 13:347. [PMID: 36984733 PMCID: PMC10054700 DOI: 10.3390/membranes13030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
For the production of polyhydroxyalkanoates (PHA) using nitrogen-rich feedstocks (e.g., protein-rich resources), the typical strategy of restricting cell growth as a means to enhance overall PHA productivity by nitrogen limitation is not applicable. In this case, a possible alternative to remove the nitrogen excess (NH4+/NH3) is by applying membrane separation processes. In the present study, the use of Donnan dialysis to separate ammonium ions from volatile fatty acids present in the media for the production of PHA was evaluated. Synthetic and real feed solutions were used, applying NaCl and HCl receiver solutions separated by commercial cation-exchange membranes. For this specific purpose, Fumasep and Ralex membranes showed better performance than Ionsep. Sorption of ammonium ions occurred in the Ralex membrane, thus intensifying the ammonium extraction. The separation performances with NaCl and HCl as receiver solutions were similar, despite sorption occurring in the Ralex membrane more intensely in the presence of NaCl. Higher volumetric flow rates, NaCl receiver concentrations, and volume ratios of feed:receiver solutions enhanced the degree of ammonium recovery. The application of an external electric potential difference to the two-compartment system did not significantly enhance the rate of ammonium appearance in the receiver solution. The results obtained using a real ammonium-containing solution after fermentation of cheese whey showed that Donnan dialysis can be successfully applied for ammonium recovery from such solutions.
Collapse
Affiliation(s)
- Kayo Santana Barros
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- IEC Group, ISIRYM, Universitat Politècnica de València, Camí de Vera s/n, 46022, P.O. Box 22012, E-46071 València, Spain
| | - Mónica Carvalheira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Bruno Costa Marreiros
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Ascensão M. Reis
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João Goulão Crespo
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Valentín Pérez-Herranz
- IEC Group, ISIRYM, Universitat Politècnica de València, Camí de Vera s/n, 46022, P.O. Box 22012, E-46071 València, Spain
| | - Svetlozar Velizarov
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Yang Y, Lu L, Shen Y, Wang J, Li L, Ma R, Ullah Z, Xiang M, Yu Y. Asymmetric Alternative Current Electrochemical Method Coupled with Amidoxime-Functionalized Carbon Felt Electrode for Fast and Efficient Removal of Hexavalent Chromium from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050952. [PMID: 36903830 PMCID: PMC10005244 DOI: 10.3390/nano13050952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 05/27/2023]
Abstract
A large amount of Cr (VI)-polluted wastewater produced in electroplating, dyeing and tanning industries seriously threatens water ecological security and human health. Due to the lack of high-performance electrodes and the coulomb repulsion between hexavalent chromium anion and cathode, the traditional DC-mediated electrochemical remediation technology possesses low Cr (VI) removal efficiency. Herein, by modifying commercial carbon felt (O-CF) with amidoxime groups, amidoxime-functionalized carbon felt electrodes (Ami-CF) with high adsorption affinity for Cr (VI) were prepared. Based on Ami-CF, an electrochemical flow-through system powered by asymmetric AC was constructed. The mechanism and influencing factors of efficient removal of Cr (VI) contaminated wastewater by an asymmetric AC electrochemical method coupling Ami-CF were studied. Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) characterization results showed that Ami-CF was successfully and uniformly loaded with amidoxime functional groups, and the adsorption capacity of Cr (VI) was more than 100 times higher than that of O-CF. In particular, the Coulomb repulsion effect and the side reaction of electrolytic water splitting were inhibited by the high-frequency anode and cathode switching (asymmetric AC), the mass transfer rate of Cr (VI) from electrode solution was increased, the reduction efficiency of Cr (VI) to Cr (III) was significantly promoted and a highly efficient removal of Cr (VI) was achieved. Under optimal operating conditions (positive bias 1 V, negative bias 2.5 V, duty ratio 20%, frequency 400 Hz, solution pH = 2), the asymmetric AC electrochemistry based on Ami-CF can achieve fast (30 s) and efficient removal (>99.11%) for 0.5-100 mg·L-1 Cr (VI) with a high flux of 300 L h-1 m-2. At the same time, the durability test verified the sustainability of the AC electrochemical method. For Cr (VI)-polluted wastewater with an initial concentration of 50 mg·L-1, the effluent concentration could still reach drinking water grade (<0.05 mg·L-1) after 10 cycling experiments. This study provides an innovative approach for the rapid, green and efficient removal of Cr (VI) containing wastewater at low and medium concentrations.
Collapse
Affiliation(s)
- Yunze Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang’an University, Xi’an 710064, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunjiang Yu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang’an University, Xi’an 710064, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
8
|
Barros KS, Giacobbo A, Agnol GD, Velizarov S, Pérez–Herranz V, Bernardes AM. Evaluation of mass transfer behaviour of sulfamethoxazole species at ion–exchange membranes by chronopotentiometry for electrodialytic processes. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159283. [PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
Collapse
Affiliation(s)
- Bogna Sniatala
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tonni Agustiono Kurniawan
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
10
|
Rybalkina OA, Solonchenko KV, Butylskii DY, Nikonenko VV, Pismenskaya ND. Effect of the Parameters of Pulsed Electric Fields on the Average Current Density in the Electrodialysis Desalination of a Phosphate-Containing Solution. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Wu X, Cai W, Fu Y, Liu Y, Ye X, Qian Q, Van der Bruggen B. Separation and Concentration of Nitrogen and Phosphorus in a Bipolar Membrane Electrodialysis System. MEMBRANES 2022; 12:1116. [PMID: 36363671 PMCID: PMC9695792 DOI: 10.3390/membranes12111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Struvite crystallization is a successful technique for simultaneously recovering PO43- and NH4+ from wastewater. However, recovering PO43- and NH4+ from low-concentration solutions is challenging. In this study, PO43-, NH4+, and NO3- were separated and concentrated from wastewater using bipolar membrane electrodialysis, PO43- and NH4+ can then be recovered as struvite. The separation and concentration of PO43- and NH4+ are clearly impacted by current density, according to experimental findings. The extent of separation and migration rate increased with increasing current density. The chemical oxygen demand of the feedwater has no discernible impact on the separation and recovery of ions. The migration of PO43-, NH4+, and NO3- fits zero-order migration kinetics. The concentrated concentration of NH4+ and PO43- reached 805 mg/L and 339 mg/L, respectively, which demonstrates that BMED is capable of effectively concentrating and separating PO43- and NH4+. Therefore, BMED can be considered as a pretreatment method for recovering PO43- and NH4+ in the form of struvite from wastewater.
Collapse
Affiliation(s)
- Xiaoyun Wu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Wanling Cai
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Yaoxing Liu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Xin Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, ProcESS—Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
12
|
Rybalkina O, Solonchenko K, Chuprynina D, Pismenskaya N, Nikonenko V. Effect of Pulsed Electric Field on the Electrodialysis Performance of Phosphate-Containing Solutions. MEMBRANES 2022; 12:1107. [PMID: 36363662 PMCID: PMC9693851 DOI: 10.3390/membranes12111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
A comparative analysis of mass transfer characteristics and energy consumption was carried out for the electrodialysis recovery of PV from of NaH2PO4 solutions and multicomponent (0.045 M NaxH(3-x)PO4, 0.02 M KCl, 0.045 M KOH, 0.028 M CaCl2, and 0.012 M MgCl2, pH 6.0 ± 0.1) solution in conventional continuous current (CC) and pulsed electric field (PEF) modes. The advantages of using PEF in comparison with CC mode are shown to increase the current efficiency and reduce energy consumption, as well as reduce scaling on heterogeneous anion-exchange membranes. It has been shown that PEF contributes to the suppression of the "acid dissociation" phenomenon, which is specific for anion-exchange membranes in phosphate-containing solutions. Pulse and pause lapse 0.1 s-0.1 s and duty cycle 1/2 were found to be optimal among the studied PEF parameters.
Collapse
Affiliation(s)
- Olesya Rybalkina
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Daria Chuprynina
- Analytical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Natalia Pismenskaya
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
13
|
Huang Q, Luo K, Pi Z, He L, Yao F, Chen S, Hou K, Liu Y, Li X, Yang Q. Zirconium-modified biochar as the efficient adsorbent for low-concentration phosphate: performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62347-62360. [PMID: 35397030 DOI: 10.1007/s11356-022-20088-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Achieving advanced treatment of phosphorus (P) to prevent water eutrophication and meet increasingly stringent wastewater discharge standard is an important goal of water management. In this study, a low-cost, high-efficiency phosphate adsorbent zirconium-modified biochar (ZrBC) was successfully synthesized through co-precipitation method, in which the biochar was prepared from the pyrolysis of peanut shell powder. ZrBC exhibited strong adsorption ability to low-concentration phosphate (< 1 mg·L-1) in water, and the phosphate removal reached 100% at the investigated dosage range (0.1-1.0 mg·L-1). The adsorption process could be described well by pseudo-second-order model and Langmuir isotherm model, indicating that the phosphate adsorption by ZrBC was mainly a chemical adsorption and single-layer adsorption process. The calculated static maximum phosphate adsorption capacity was 58.93 mg·g-1 at 25 °C. The ligand exchange between surface hydroxyl groups and phosphate was the main mechanism for the phosphate adsorption on ZrBC. The presence of coexisting anions except for SO42- had little effect on the phosphate removal. At the column experiment, ZrBC showed superior treatment capacities for simulated secondary effluents and the breakthrough time for 0.5 mg·L-1 effluent phosphate concentration reached 190 h. ZrBC highlights the potential as an effective and environment-friendly adsorbent for the removal of low-concentration phosphate from secondary effluents of municipal wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Qi Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Kun Luo
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, People's Republic of China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yujie Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| |
Collapse
|
14
|
Nielsen EN, Skibsted LH, Yazdi SR, Merkel A, Ahrné LM. Improving electrodialysis separation efficiency of minerals from acid whey by nano‐filtration pre‐processing. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emilie N Nielsen
- Department of Food Science University of Copenhagen Rolighedsvej 26 1958 Frederiksberg Denmark
| | - Leif H Skibsted
- Department of Food Science University of Copenhagen Rolighedsvej 26 1958 Frederiksberg Denmark
| | - Saeed R Yazdi
- Arla Foods Amba Agro Food Park 19 8200 Aarhus N Denmark
| | - Arthur Merkel
- MemBrain s.r.o. (Membrane Innovation Centre) Pod Vinicí 87, 471 27 Stráž pod Ralskem Czech Republic
- Institute for Nanomaterials, Advanced Technologies and Innovation Technical University of Liberec Studentská 2 461 17 Liberec Czech Republic
| | - Lilia M Ahrné
- Department of Food Science University of Copenhagen Rolighedsvej 26 1958 Frederiksberg Denmark
| |
Collapse
|
15
|
Recovery of Nutrients from Residual Streams Using Ion-Exchange Membranes: Current State, Bottlenecks, Fundamentals and Innovations. MEMBRANES 2022; 12:membranes12050497. [PMID: 35629823 PMCID: PMC9145069 DOI: 10.3390/membranes12050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
The review describes the place of membrane methods in solving the problem of the recovery and re-use of biogenic elements (nutrients), primarily trivalent nitrogen NIII and pentavalent phosphorus PV, to provide the sustainable development of mankind. Methods for the recovery of NH4+ − NH3 and phosphates from natural sources and waste products of humans and animals, as well as industrial streams, are classified. Particular attention is paid to the possibilities of using membrane processes for the transition to a circular economy in the field of nutrients. The possibilities of different methods, already developed or under development, are evaluated, primarily those that use ion-exchange membranes. Electromembrane methods take a special place including capacitive deionization and electrodialysis applied for recovery, separation, concentration, and reagent-free pH shift of solutions. This review is distinguished by the fact that it summarizes not only the successes, but also the “bottlenecks” of ion-exchange membrane-based processes. Modern views on the mechanisms of NH4+ − NH3 and phosphate transport in ion-exchange membranes in the presence and in the absence of an electric field are discussed. The innovations to enhance the performance of electromembrane separation processes for phosphate and ammonium recovery are considered.
Collapse
|
16
|
Liu H, She Q. Influence of membrane structure-dependent water transport on conductivity-permselectivity trade-off and salt/water selectivity in electrodialysis: Implications for osmotic electrodialysis using porous ion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Two mechanisms of H+/OH− ion generation in anion-exchange membrane systems with polybasic acid salt solutions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Pismenskaya N, Rybalkina O, Moroz I, Mareev S, Nikonenko V. Influence of Electroconvection on Chronopotentiograms of an Anion-Exchange Membrane in Solutions of Weak Polybasic Acid Salts. Int J Mol Sci 2021; 22:ijms222413518. [PMID: 34948329 PMCID: PMC8708104 DOI: 10.3390/ijms222413518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Visualization of electroconvective (EC) vortices at the undulated surface of an AMX anion-exchange membrane (Astom, Osaka, Japan) was carried out in parallel with the measurement of chronopotentiograms. Weak polybasic acid salts, including 0.02 M solutions of tartaric (NaHT), phosphoric (NaH2PO4), and citric (NaH2Cit) acids salts, and NaCl were investigated. It was shown that, for a given current density normalized to the theoretical limiting current calculated by the Leveque equation (i/ilimtheor), EC vortex zone thickness, dEC, decreases in the order NaCl > NaHT > NaH2PO4 > NaH2Cit. This order is inverse to the increase in the intensity of proton generation in the membrane systems under study. The higher the intensity of proton generation, the lower the electroconvection. This is due to the fact that protons released into the depleted solution reduce the space charge density, which is the driver of EC. In all studied systems, a region in chronopotentiograms between the rapid growth of the potential drop and the attainment of its stationary values corresponds to the appearance of EC vortex clusters. The amplitude of the potential drop oscillations in the chronopotentiograms is proportional to the size of the observed vortex clusters.
Collapse
|
19
|
Marcal J, Bishop T, Hofman J, Shen J. From pollutant removal to resource recovery: A bibliometric analysis of municipal wastewater research in Europe. CHEMOSPHERE 2021; 284:131267. [PMID: 34217935 DOI: 10.1016/j.chemosphere.2021.131267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Municipal wastewaters are abundant low-strength streams that require adequate treatment and disposal to ensure public and environmental health. This study aims to provide a comprehensive summary of municipal wastewater research in Europe in the 2010s in the form of bibliometric analysis. The work was based on the Science Citation Index Expanded (Web of Science) and carried out using the R-package bibliometrix for bibliometric data analysis and the software VOSviewer for science mapping. Analysing a dataset of 5645 publications, we identified the most influential journals, countries, authors, institutions, and publications, and mapped the co-authorship and keyword co-occurrence networks. Spain had produced the most publications while Switzerland had the highest average citations per publication. China was the most collaborative country from outside of Europe. Analysis of the most cited articles revealed the popularity of micropollutant removal in European municipal wastewater research. The keyword analysis visualized a paradigm shift from pollutant removal towards resource recovery and circular economy. We found that current challenges of resource recovery from municipal wastewater come from both technical and non-technical (e.g., environmental, economic, and social) aspects. We also discussed future research opportunities that can tackle these challenges.
Collapse
Affiliation(s)
- Juliana Marcal
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath, BA2 7AY, UK
| | - Toby Bishop
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Jan Hofman
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath, BA2 7AY, UK; KWR Water Research Institute, PO Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Junjie Shen
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath, BA2 7AY, UK; Centre for Advanced Separations Engineering (CASE), University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
20
|
Eltaweil AS, Omer AM, El-Aqapa HG, Gaber NM, Attia NF, El-Subruiti GM, Mohy-Eldin MS, Abd El-Monaem EM. Chitosan based adsorbents for the removal of phosphate and nitrate: A critical review. Carbohydr Polym 2021; 274:118671. [PMID: 34702487 DOI: 10.1016/j.carbpol.2021.118671] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023]
Abstract
The tremendous development in the industrial sector leads to discharging of the several types of effluents containing detrimental contaminants into water sources. Lately, the proliferation of toxic anions particularly phosphates and nitrates onto aquatic systems certainly depreciates the ecological system and causes a deadly serious problem. Chitosan (Cs) is one of the most auspicious biopolymer adsorbents that are being daily developed for removing of various contaminants from polluted water. This is due to its unparalleled benefits involving biocompatibility, non-toxicity, facile modifications and low-cost production. Nevertheless, chitosan displays considerable drawbacks including low adsorption capacity, low surface area and lack of reusability. Therefore, few findings have been established regarding the aptitude of modified chitosan-based adsorbents towards phosphate and nitrate anions. This review elaborates an overview for the current advances of modified chitosan based-adsorbent for phosphate and nitrate removal, in specific multivalent metals-modified chitosan, clays and zeolite-modified chitosan, magnetic chitosan and carbon materials-modified chitosan. The efforts that have been executed for enriching their adsorption characteristics as well as their possible adsorption mechanisms and reusability were well addressed. Besides, the research conclusions for the optimum adsorption conditions were also discussed, along with emphasizing the foremost research gaps and future potential trends that could motivate further research and innovation to find best solutions for water treatment problems facing the world.
Collapse
Affiliation(s)
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nourhan Mohamed Gaber
- Department of Medical Laboratories, Faculty of Applied health science technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Khadem Modarresi Z, Mowla D, Karimi G. Electrodialytic separation of phosphate from sewage sludge ash using electrospun ion exchange membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Hernández J, Ruiz D. Removal of chloride ions from a copper leaching solution, using electrodialysis, to improve the uranium extraction through ion-exchange. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126582. [PMID: 34274802 DOI: 10.1016/j.jhazmat.2021.126582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
This study shows the technical feasibility to recover uranium from copper Pregnant Leaching Solutions (PLS) using ion-exchange, after a removal of chloride ions using the electrodialysis (ED) technique. The original copper PLS solutions came from the National Copper Corporation (CODELCO), from their hydrometallurgical operations, which contained high concentrations of chloride ions. These solutions contained average concentrations of 22 g/L chloride ions, pH 1.5 - 1.8 and 20 mg/L uranium. The high chloride contents made the uranium recovery technically unfeasible, because of the high volumes of chemical reagents needed to operate. To eliminate the chloride ions selectively, a modified electrodialysis (ED) process was developed. The ED process was made of a three-compartment cell. This system removed selectively the chloride ions, and replaced them with sulphuric ions, without modifying the composition of the copper PLS solution, to allow a continuous operation of the copper production plant. The ED process decreased the chloride content from 22 g/L to 6 g/L. Finally, static and dynamic load tests were performed for both the original PLS and the treated PLS, using 3 different anion-exchange resins: Dowex-1, Lewatit A365 and Lewatit MP62-WS. The loading capacity of the ion-exchange resins was increased 4 times approximately.
Collapse
Affiliation(s)
- José Hernández
- Chilean Nuclear Energy Commission (CChEN), Santiago, Chile.
| | | |
Collapse
|
23
|
Rotta EH, Marder L, Pérez-Herranz V, Bernardes AM. Characterization of an anion-exchange membrane subjected to phosphate and sulfate separation by electrodialysis at overlimiting current density condition. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Xu L, Ding R, Mao Y, Peng S, Li Z, Zong Y, Wu D. Selective recovery of phosphorus and urea from fresh human urine using a liquid membrane chamber integrated flow-electrode electrochemical system. WATER RESEARCH 2021; 202:117423. [PMID: 34284122 DOI: 10.1016/j.watres.2021.117423] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) extraction from human urine is a potential strategy to address global resource shortage, but few approaches are able to obtain high-quality liquid P products. In this study, we introduced an innovative flow-electrode capacitive deionization (FCDI) system, also called ion-capture electrochemical system (ICES), for selectively extracting P and N (i.e., urea) from fresh human urine simply by integrating a liquid membrane chamber (LMC) using a pair of anion exchange membrane (AEM). In the charging process, negatively charged P ions (i.e., HPO42- and H2PO4-) can be captured by acidic extraction solutions (e.g., solutions of HCl, HNO3 and H2SO4) on their way to the anode chamber, leading to the conversion of P ions to uncharged H3PO4, while other undesired ions such as Cl- and SO42- are expelled. Simultaneously, uncharged urea molecules remain in the urine effluent with the removal of salt. Thus, high-purity phosphoric acid and urea solutions can be obtained in the LMC and spacer chambers, respectively. The purification of P in an acidic environment is ascribed largely to the competitive migration and protonation of ions. The latter contributes ~27% for the selective capture of P. Under the optimal operating conditions (i.e., ratio of the urine volume to the HCl volume = 7:3, initial pH of the extraction solution = 1.43, current density = 20 A/m2 and threshold pH ~ 2.0), satisfactory recovery performance (811 mg/L P with 73.85% purity and 8.3 g/L urea-N with 81.4% extraction efficiency) and desalination efficiency (91.1%) were obtained after 37.5 h of continuous operation. Our results reveal a promising strategy for improving in selective separation and continuous operation via adjustments to the cell configuration, initiating a new research dimension toward selective ion separation and high-quality P recovery.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Ren Ding
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zheng Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
25
|
Rybalkina OA, Solonchenko KV, Nikonenko VV, Pismenskaya ND. Investigation of Causes of Low Current Efficiency in Electrodialysis of Phosphate-Containing Solutions. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621040065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Investigation of ion-exchange membranes by means of chronopotentiometry: A comprehensive review on this highly informative and multipurpose technique. Adv Colloid Interface Sci 2021; 293:102439. [PMID: 34058435 DOI: 10.1016/j.cis.2021.102439] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
Electrodialysis is mostly used for drinking water production but it has gained applicability in different new fields in recent decades. Membrane characteristics and ion transport properties strongly influence the efficiency of electrodialysis and must be evaluated to avoid an intense energy consumption and ensure long membrane times of usage. To this aim, conducting studies on ion transport across membranes is essential. Several dynamic characterization methods can be employed, among which, chronopotentiometry has shown special relevance because it allows a direct access to the contribution of the potential in different states of the membrane/solution system. The present paper provides a critical review on the use of chronopotentiometry to determine the main membrane transport properties and to evaluate mass transfer phenomena. Properties, such as limiting current density, electrical resistances, plateau length, transport number of counter-ions in the membrane, transition times, and apparent fraction of membrane conductive area have been intensively discussed in the literature and are presented in this review. Some of the phenomena evaluated using this technique are concentration polarization, gravitational convection, electroconvection, water dissociation, and fouling/scaling, all of them also shown herein. Mathematical and experimental studies were considered. New trends in chronopotentiometric studies should include ion-exchange membranes that have been recently developed (presenting anti-fouling, anti-microbial, and monovalent-selective properties) and a deeper discussion on the behaviour of complex solutions that have been often treated by electrodialysis, such as municipal wastewaters. New mathematical models, especially 3D ones, are also expected to be developed in the coming years.
Collapse
|
27
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Application of membrane separation processes in phosphorus recovery: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144346. [PMID: 33422961 DOI: 10.1016/j.scitotenv.2020.144346] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
The depletion of phosphorus resources and the excess discharge of phosphorus into waste streams are contrasting problems. The key to solving both problems is to recover phosphorus from the waste streams. Current phosphorus recovery technologies require high phosphorus concentrations and lack the ability to separate toxic substances from recovered phosphorus products. Membrane separation processes such as nanofiltration, forward osmosis, and electrodialysis are examples of effective methods for solving some of these issues. In this paper, the mechanisms, performance, and influential factors affect phosphorus recovery from membrane separation are reviewed. Membrane fouling, energy consumption, and the selectivity of toxic substances in membrane separation processes were evaluated. This work will serve as a basis for future research and development of phosphorus recovery by membrane separation processes and as a response to the increasingly pressing issues of eutrophication and the growing depletion of phosphorus resources.
Collapse
Affiliation(s)
- Xiang Li
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| | - Shuting Shen
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Yuye Xu
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Ting Guo
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Hongliang Dai
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, PR China.
| | - Xiwu Lu
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| |
Collapse
|
28
|
Zhang C, Wang M, Xiao W, Ma J, Sun J, Mo H, Waite TD. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI). WATER RESEARCH 2021; 189:116653. [PMID: 33232816 DOI: 10.1016/j.watres.2020.116653] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
The recovery of phosphorus (P) from wastewaters is a worthy goal considering the potential environmental and economic benefits. Flow-electrode capacitive deionization (FCDI), which employs flowable carbon electrodes instead of the static electrodes used in conventional CDI, has been demonstrated to be a promising P recovery technology. FCDI outperforms CDI and other competitive technologies in a number of aspects including (i) large salt adsorption capacity and (ii) extremely high water recovery rate. In this study, magnetic (Fe3O4 impregnated) activated carbon particles were prepared and applied as FCDI electrodes. The magnetic carbon electrodes were found to have a strong affinity towards P, facilitating the selective adsorption of P to the magnetic particles through a ligand exhange mechanism. Continuous operation of the FCDI system could be achieved with only three minutes required to separate the electrode particles from the brine stream on application of an external magnetic field. A P-rich stream was produced on regeneration of the exhausted magnetic electrodes using alkali solution. We envision that the use of magnetic carbon enhanced flow-electrodes will pave the way for efficient operation of FCDI as well as the preferential recovery of P.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Min Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Xiao
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hengliang Mo
- Beijing Origin Water Membrane Technology Company Limited, Huairou, Beijing, 101400, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Shanghai Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China.
| |
Collapse
|
29
|
Sarapulova V, Pismenskaya N, Titorova V, Sharafan M, Wang Y, Xu T, Zhang Y, Nikonenko V. Transport Characteristics of CJMAED™ Homogeneous Anion Exchange Membranes in Sodium Chloride and Sodium Sulfate Solutions. Int J Mol Sci 2021; 22:1415. [PMID: 33572516 PMCID: PMC7866833 DOI: 10.3390/ijms22031415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The interplay between the ion exchange capacity, water content and concentration dependences of conductivity, diffusion permeability, and counterion transport numbers (counterion permselectivity) of CJMA-3, CJMA-6 and CJMA-7 (Hefei Chemjoy Polymer Materials Co. Ltd., China) anion-exchange membranes (AEMs) is analyzed using the application of the microheterogeneous model to experimental data. The structure-properties relationship for these membranes is examined when they are bathed by NaCl and Na2SO4 solutions. These results are compared with the characteristics of the well-studied homogenous Neosepta AMX (ASTOM Corporation, Japan) and heterogeneous AMH-PES (Mega a.s., Czech Republic) anion-exchange membranes. It is found that the CJMA-6 membrane has the highest counterion permselectivity (chlorides, sulfates) among the CJMAED series membranes, very close to that of the AMX membrane. The CJMA-3 membrane has the transport characteristics close to the AMH-PES membrane. The CJMA-7 membrane has the lowest exchange capacity and the highest volume fraction of the intergel spaces filled with an equilibrium electroneutral solution. These properties predetermine the lowest counterion transport number in CJMA-7 among other investigated AEMs, which nevertheless does not fall below 0.87 even in 1.0 eq L-1 solutions of NaCl or Na2SO4. One of the reasons for the decrease in the permselectivity of CJMAED membranes is the extended macropores, which are localized at the ion-exchange material/reinforcing cloth boundaries. In relatively concentrated solutions, the electric current prefers to pass through these well-conductive but nonselective macropores rather than the highly selective but low-conductive elements of the gel phase. It is shown that the counterion permselectivity of the CJMA-7 membrane can be significantly improved by coating its surface with a dense homogeneous ion-exchange film.
Collapse
Affiliation(s)
- Veronika Sarapulova
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Valentina Titorova
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Mikhail Sharafan
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Yaoming Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China; (Y.W.); (T.X.)
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China; (Y.W.); (T.X.)
| | - Yang Zhang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhenzhou Road, Qingdao 266042, China;
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| |
Collapse
|
30
|
Li C, Ramasamy DL, Sillanpää M, Repo E. Separation and concentration of rare earth elements from wastewater using electrodialysis technology. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Barros KS, Martí-Calatayud MC, Ortega EM, Pérez-Herranz V, Espinosa DCR. Chronopotentiometric study on the simultaneous transport of EDTA ionic species and hydroxyl ions through an anion-exchange membrane for electrodialysis applications. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Tang X, Li R, Han D, Wu X. Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115210. [PMID: 32693325 DOI: 10.1016/j.envpol.2020.115210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Pore water is a crucial storage medium and a key source of sediment phosphorus. A novel equipment based on electrokinetic geosynthetics (EKGs) was used for isolating phosphorus from eutrophic lake sediments through pore water drainage. Three mutually independent indoor group experiments (A, B, and C) were conducted to investigate the effects of voltage gradient (0.00, 0.25, and 0.50 V/cm) on pore water drainage capacity, phosphorus removal performance, sediment physicochemical properties, and phosphorus storage dynamics. The average reduction in the sediment moisture and total phosphorus content was 2.5%, 4.3%, and 4.6% and 28.15, 75.95, and 112.65 mg/kg after 6 days of treatment for A, B and C, respectively. Efficient pore water drainage through gravity and electroosmotic flow and electromigration of phosphate were the main drivers of sediment-dissolved and mobilized phosphorus separation. A high voltage gradient facilitated the migration of pore water and the phosphorus in it. The maximal effluent total phosphorous (TP) concentration was up to 27.9 times that in the initial pore water samples, and negligible effluent TP was detected when the pore water pH was less than 2.5. The TP concentration was exponentially and linearly related to the pH and electronic conductivity of the electroosmotic flow, respectively. The migration of H+ within the sediment matrix promoted the liberation of metals bounded to phosphorus, particularly of Ca-P and Fe-P. Pore water drainage through an EKG resulted in Ex-P separation of up to 87.50% and a 13.84 mg/kg decrease in Ca-P and 125.35 mg/kg accumulation of low mobile Fe-P in the weak acid anode zone.
Collapse
Affiliation(s)
- Xianqiang Tang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China; Changjiang River Eco-Environmental Engineering Research Centre, China Three Gorges Corporation, Beijing, 10080, China.
| | - Rui Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| | - Ding Han
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| | - Xingyi Wu
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| |
Collapse
|
33
|
Yu X, Tang Y, Pan J, Shen L, Begum A, Gong Z, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1751-1769. [PMID: 32762110 DOI: 10.1002/wer.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
By summarizing 187 relevant research articles published in 2019, the review is focused on the research progress of physicochemical processes for wastewater treatment. This review divides into two sections, physical processes and chemical processes. The physical processes section includes three sub-sections, that is, adsorption, granular filtration, and dissolved air flotation, whereas the chemical processes section has five sub-sections, that is, coagulation/flocculation, advanced oxidation processes, electrochemical, capacitive deionization, and ion exchange. PRACTITIONER POINTS: Totally 187 research articles on wastewater treatment have been reviewed and discussed. The review has two major sections with eight sub-topics.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- China Construction Science & Technology Co. Ltd., Shenzhen Branch, Shenzhen, China
| | - Yao Tang
- Ebo Environmental Protection Group, Guangzhou, China
| | - Jian Pan
- Hangzhou Bertzer Catalyst Co., Ltd., Hangzhou, China
- Environmental Technology Innovation Center of Jiande, Hangzhou, China
| | - Lin Shen
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Afruza Begum
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| | | | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| |
Collapse
|
34
|
Cai Y, Han Z, Lin X, Duan Y, Du J, Ye Z, Zhu J. Study on removal of phosphorus as struvite from synthetic wastewater using a pilot-scale electrodialysis system with magnesium anode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138221. [PMID: 32320868 DOI: 10.1016/j.scitotenv.2020.138221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Struvite precipitation may become ineffective in removing phosphorus due to the low concentration of phosphate in the liquid. In this study, electrolysis with a magnesium anode was applied to recovering phosphorus and ammonia as struvite from wastewater. A novel electrodialysis process (ED) with a magnesium anode was developed, and its feasibility to treat synthetic wastewater with low phosphate concentration was demonstrated in a pilot-scale experimental system. To achieve high phosphate removal efficiency in the product stream, the optimal initial pH and flow rate were found to be 8.8 and 200 L h-1, respectively, for the ED system at a constant current of 0.1 A. The pilot-scale ED system under the consecutive batch mode removed 65% phosphate from the synthetic wastewater containning 10 mg L-1P, and the phosphate concentration in the product stream was kept at 30 mg L-1 after 280 min. The running cost of the ED system was estimated to be $31.27 kg-1 P for synthetic wastewater with 10 mg L-1 P, mainly resulting from the cost of the loss of the magnesium anode. The precipitates generated from the product stream were confirmed as struvite by XRD analysis.
Collapse
Affiliation(s)
- Yuyan Cai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiying Han
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaochang Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yalin Duan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianghui Du
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhangying Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jun Zhu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
35
|
Gurreri L, Tamburini A, Cipollina A, Micale G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. MEMBRANES 2020; 10:E146. [PMID: 32660014 PMCID: PMC7408617 DOI: 10.3390/membranes10070146] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022]
Abstract
This paper presents a comprehensive review of studies on electrodialysis (ED) applications in wastewater treatment, outlining the current status and the future prospect. ED is a membrane process of separation under the action of an electric field, where ions are selectively transported across ion-exchange membranes. ED of both conventional or unconventional fashion has been tested to treat several waste or spent aqueous solutions, including effluents from various industrial processes, municipal wastewater or salt water treatment plants, and animal farms. Properties such as selectivity, high separation efficiency, and chemical-free treatment make ED methods adequate for desalination and other treatments with significant environmental benefits. ED technologies can be used in operations of concentration, dilution, desalination, regeneration, and valorisation to reclaim wastewater and recover water and/or other products, e.g., heavy metal ions, salts, acids/bases, nutrients, and organics, or electrical energy. Intense research activity has been directed towards developing enhanced or novel systems, showing that zero or minimal liquid discharge approaches can be techno-economically affordable and competitive. Despite few real plants having been installed, recent developments are opening new routes for the large-scale use of ED techniques in a plethora of treatment processes for wastewater.
Collapse
Affiliation(s)
| | - Alessandro Tamburini
- Dipartimento di Ingegneria, Università degli Studi di Palermo, viale delle Scienze Ed. 6, 90128 Palermo, Italy; (L.G.); (A.C.); (G.M.)
| | | | | |
Collapse
|
36
|
Lin J, Zhao Y, Zhan Y, Wang Y. Influence of coexisting calcium and magnesium ions on phosphate adsorption onto hydrous iron oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11303-11319. [PMID: 31965506 DOI: 10.1007/s11356-020-07676-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Removal of phosphorus (P) from municipal wastewater is of vital importance to the control of eutrophication in receiving freshwater bodies. Typical cations such as Ca2+ and Mg2+ generally exist in municipal wastewater, and they may affect the sorption behavior and mechanism of iron oxide-based materials for aqueous phosphate (HxPO4x - 3, x = 0, 1, 2, or 3 depending on solution pH). To better apply iron oxide-containing materials as adsorbents to eliminate HxPO4x - 3 in municipal wastewater, a hydrous ferric oxide (HFEO) was prepared and characterized at first and then the impact of coexisting Ca2+ and Mg2+ on the uptake of HxPO4x - 3 by HFEO was studied. The results showed that, without coexisting Ca2+ and Mg2+, the kinetic data for HxPO4x - 3 sorption onto HFEO were better described by the Elovich model (R2 = 0.953) than the pseudo-second-order (R2 = 0.838) and pseudo-first-order (R2 = 0.641) models, and the isotherm data were fitted better with the Dubinin-Radushkevich (R2 = 0.966) and Freundlich (R2 = 0.953) models than with the Langmuir (R2 = 0.924) model. The ligand exchange of the Fe-bound hydroxyl group with HxPO4x - 3 and the generation of Fe-O-P bonding played a key role in the uptake of HxPO4x - 3 by HFEO in the absence of Ca2+ and Mg2+. Coexisting Ca2+ and Mg2+ greatly improved the adsorptive removal of HxPO4x - 3 by HFEO, including the adsorption capacity and initial adsorption rate. According to the Langmuir isotherm equation, the predicted maximum HxPO4x - 3 adsorption capacity for HFEO at pH 7 in the presence of 2 mmol/L Ca2+ (24.7 mg P/g) or 2 mmol/L Mg2+ (18.4 mg P/g) was much larger than that without coexisting Ca2+ and Mg2+ (10.7 mg P/g). The formation of aqueous CaHPO40 and MgHPO40 species firstly and then the adsorption of the formed CaHPO40 and MgHPO40 species on the HFEO surface to generate the HPO42--bridged ternary complexes (i.e., Fe(OPO3H)Ca+ and Fe(OPO3H)Mg+) had an important role in the improvement of HxPO4x - 3 adsorption onto HFEO by coexisting Ca2+ and Mg2+.
Collapse
Affiliation(s)
- Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China.
| | - Yuying Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China
| | - Yan Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China
| |
Collapse
|
37
|
Larriba O, Rovira-Cal E, Juznic-Zonta Z, Guisasola A, Baeza JA. Evaluation of the integration of P recovery, polyhydroxyalkanoate production and short cut nitrogen removal in a mainstream wastewater treatment process. WATER RESEARCH 2020; 172:115474. [PMID: 31958593 DOI: 10.1016/j.watres.2020.115474] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Wastewater treatment systems are nowadays evolving into systems where energy and resources are recovered from wastewater. This work presents the long term operation of a demo-scale pilot plant (7.8 m3) with a novel configuration named as mainstream SCEPPHAR (ShortCut Enhanced Phosphorus and polyhydroxyalkanoate (PHA) Recovery) and based on two sequencing batch reactors (R1-HET and R2-AUT). This is the first report of an implementation at demo scale and under relevant operational conditions of the simultaneous integration of shortcut nitrification, P recovery and production of sludge with a higher PHA content than conventional activated sludge. An operating period under full nitrification mode achieved successful removal efficiencies for total N, P and CODT (86 ± 12%, 93 ± 9% and 79 ± 6%). In the following period, nitrite shortcut (with undetectable activity of nitrite oxidising bacteria) was achieved by implementing automatic control of the aerobic phase length in R2-AUT using ammonium measurement and operating at a lower sludge retention time. Similar N, P and CODT removal efficiencies to the full nitrification period were obtained. P-recovery from the anaerobic supernatant of R1-HET was achieved in a separate precipitator by increasing pH and dosing MgCl2, recovering an average value of 45% of the P in the influent as struvite precipitate, with a peak up to 63%. These values are much higher than the typical values of sidestream P-recovery (12%). Regarding PHA, a percentage in the biomass in the range 6.9-9.2% (gPHA·g-1TSS) was obtained.
Collapse
Affiliation(s)
- Oriol Larriba
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Eric Rovira-Cal
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Zivko Juznic-Zonta
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Albert Guisasola
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Juan Antonio Baeza
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
38
|
Preparation of polyaminated Fe3O4@chitosan core-shell magnetic nanoparticles for efficient adsorption of phosphate in aqueous solutions. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Pismenskaya N, Rybalkina O, Kozmai A, Tsygurina K, Melnikova E, Nikonenko V. Generation of H+ and OH− ions in anion-exchange membrane/ampholyte-containing solution systems: A study using electrochemical impedance spectroscopy. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Robles Á, Aguado D, Barat R, Borrás L, Bouzas A, Giménez JB, Martí N, Ribes J, Ruano MV, Serralta J, Ferrer J, Seco A. New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. BIORESOURCE TECHNOLOGY 2020; 300:122673. [PMID: 31948770 DOI: 10.1016/j.biortech.2019.122673] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 05/26/2023]
Abstract
Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environmental innovation perspectives. The potentials and limitations of different technologies are discussed, covering systems based on membranes, photosynthesis, crystallization and other physical and biological nutrient recovery systems (e.g. incineration, composting, stripping and absorption and enhanced biological phosphorus recovery).
Collapse
Affiliation(s)
- Ángel Robles
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain.
| | - Daniel Aguado
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Ramón Barat
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Luis Borrás
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Alberto Bouzas
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Juan Bautista Giménez
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Nuria Martí
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Josep Ribes
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - María Victoria Ruano
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Joaquín Serralta
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - José Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Aurora Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
41
|
Rohman FS, Aziz N. Performance metrics analysis of dynamic multi-objective optimization for energy consumption and productivity improvement in batch electrodialysis. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1674817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fakhrony Sholahudin Rohman
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Penang, Malaysia
| | - Norashid Aziz
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Penang, Malaysia
| |
Collapse
|
42
|
Loza NV, Loza SA, Romanyuk NA, Kononenko NA. Experimental and Theoretical Studies of Electrodialysis of Model Solutions Containing Aniline and Sulfuric Acid. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s102319351909009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Rybalkina O, Tsygurina K, Melnikova E, Mareev S, Moroz I, Nikonenko V, Pismenskaya N. Partial Fluxes of Phosphoric Acid Anions through Anion-Exchange Membranes in the Course of NaH 2PO 4 Solution Electrodialysis. Int J Mol Sci 2019; 20:E3593. [PMID: 31340475 PMCID: PMC6678999 DOI: 10.3390/ijms20143593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/23/2022] Open
Abstract
Electrodialysis (ED) with ion-exchange membranes is a promising method for the extraction of phosphates from municipal and other wastewater in order to obtain cheap mineral fertilizers. Phosphorus is transported through an anion-exchange membrane (AEM) by anions of phosphoric acid. However, which phosphoric acid anions carry the phosphorus in the membrane and the boundary solution, that is, the mechanism of phosphorus transport, is not yet clear. Some authors report an unexpectedly low current efficiency of this process and high energy consumption. In this paper, we report the partial currents of H2PO4-, HPO42-, and PO43- through Neosepta AMX and Fujifilm AEM Type X membranes, as well as the partial currents of H2PO4- and H+ ions through a depleted diffusion layer of a 0.02 M NaH2PO4 feed solution measured as functions of the applied potential difference across the membrane under study. It was shown that the fraction of the current transported by anions through AEMs depend on the total current density/potential difference. This was due to the fact that the pH of the internal solution in the membrane increases with the growing current due to the increasing concentration polarization (a lower electrolyte concentration at the membrane surface leads to higher pH shift in the membrane). The HPO42- ions contributed to the charge transfer even when a low current passed through the membrane; with an increasing current, the contribution of the HPO42- ions grew, and when the current was about 2.5 ilimLev (ilimLev was the theoretical limiting current density), the PO43- ions started to carry the charge through the membrane. However, in the feed solution, the pH was 4.6 and only H2PO4- ions were present. When H2PO4- ions entered the membrane, a part of them transformed into doubly and triply charged anions; the H+ ions were released in this transformation and returned to the depleted diffusion layer. Thus, the phosphorus total flux, jP (equal to the sum of the fluxes of all phosphorus-bearing species) was limited by the H2PO4- transport from the bulk of feed solution to the membrane surface. The value of jP was close to ilimLev/F (F is the Faraday constant). A slight excess of jP over ilimLev/F was observed, which is due to the electroconvection and exaltation effects. The visualization showed that electroconvection in the studied systems was essentially weaker than in systems with strong electrolytes, such as NaCl.
Collapse
Affiliation(s)
- Olesya Rybalkina
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Kseniya Tsygurina
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | | | - Semyon Mareev
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Ilya Moroz
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia.
| | | |
Collapse
|