1
|
Min K, Lee Y, Choi Y, Kwon OJ, Kim TH. High-performance anion exchange membranes achieved by crosslinking two aryl ether-free polymers: poly(bibenzyl N-methyl piperidine) and SEBS. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
2
|
Ayaz S, Yao ZY, Chen YJ, Yu HY. Preparation of poly(arylene ether ketone) based anion exchange membrane with pendant pyrimidinium and pyridazinium cation derivatives for alkaline fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Abstract
This Review provides an overview of the emerging concepts of catalysts, membranes, and membrane electrode assemblies (MEAs) for water electrolyzers with anion-exchange membranes (AEMs), also known as zero-gap alkaline water electrolyzers. Much of the recent progress is due to improvements in materials chemistry, MEA designs, and optimized operation conditions. Research on anion-exchange polymers (AEPs) has focused on the cationic head/backbone/side-chain structures and key properties such as ionic conductivity and alkaline stability. Several approaches, such as cross-linking, microphase, and organic/inorganic composites, have been proposed to improve the anion-exchange performance and the chemical and mechanical stability of AEMs. Numerous AEMs now exceed values of 0.1 S/cm (at 60-80 °C), although the stability specifically at temperatures exceeding 60 °C needs further enhancement. The oxygen evolution reaction (OER) is still a limiting factor. An analysis of thin-layer OER data suggests that NiFe-type catalysts have the highest activity. There is debate on the active-site mechanism of the NiFe catalysts, and their long-term stability needs to be understood. Addition of Co to NiFe increases the conductivity of these catalysts. The same analysis for the hydrogen evolution reaction (HER) shows carbon-supported Pt to be dominating, although PtNi alloys and clusters of Ni(OH)2 on Pt show competitive activities. Recent advances in forming and embedding well-dispersed Ru nanoparticles on functionalized high-surface-area carbon supports show promising HER activities. However, the stability of these catalysts under actual AEMWE operating conditions needs to be proven. The field is advancing rapidly but could benefit through the adaptation of new in situ techniques, standardized evaluation protocols for AEMWE conditions, and innovative catalyst-structure designs. Nevertheless, single AEM water electrolyzer cells have been operated for several thousand hours at temperatures and current densities as high as 60 °C and 1 A/cm2, respectively.
Collapse
Affiliation(s)
- Naiying Du
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Claudie Roy
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- National
Research Council of Canada, 2620 Speakman Drive, Mississauga, Ontario L5K 1B1, Canada
| | - Retha Peach
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
| | - Matthew Turnbull
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Simon Thiele
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
- Department
Chemie- und Bioingenieurwesen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Christina Bock
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
4
|
Simultaneous improvement of anion conductivity and cell durability through the formation of dense ion clusters of F-doped graphitic carbon nitride/quaternized poly(phenylene oxide) composite membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Chen W, Wang X, Li T, Yan X, Wu X, Zhang Y, Zhang F, Zhang S, He G. Amphiphilic cone-shaped cationic calix[4]arene composite anion exchange membranes with continuous ionic channels. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Wang X, Li J, Chen W, Pang B, Liu Y, Guo Y, Wu X, Cui F, He G. Polybenzimidazole Ultrathin Anion Exchange Membrane with Comb-Shape Amphiphilic Microphase Networks for a High-Performance Fuel Cell. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49840-49849. [PMID: 34637257 DOI: 10.1021/acsami.1c12570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A comb-shape amphiphilic cationic side chain is proposed to well-balance the water sorption in anion exchange membranes (AEMs), in which the cationic group is in between of an ether-containing hydrophilic spacer and an alkyl hydrophobic spacer. By fully grafting the amphiphilic side chains onto polybenzimidazole (PBI), comb-shape amphiphilic microphase networks are well-developed in the AEMs, in which the alkyl hydrophobic network greatly restricts water swelling and the ether-containing hydrophilic network keeps the hydration of the cationic groups and enlarges the ion conductive channel. The as-prepared membranes achieve a high conductivity of about 91.2 mS cm-1, an extremely low swelling ratio of about 8.1% at 80 °C, and good mechanical properties at a hydrated state (tensile strength and elongation at a break of about 14.6 MPa and 77.5%, respectively). Benefits from the balanced water sorption in AEMs, the H2/O2 fuel cell with a 10 μm ultrathin membrane could withstand 80 °C and 0.1 MPa back pressure and achieve a high open circuit voltage of about 1.0 V and a high peak power density of about 631.5 mW cm-2. This work provides a new insight into the design of high-performance AEM.
Collapse
Affiliation(s)
- Xiaozhou Wang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Jiannan Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Wanting Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Bo Pang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yong Liu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yusong Guo
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Fujun Cui
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
7
|
Li Z, Chen J, Zhou J, Nie Y, Shen C, Gao S. Trimethyl-Ammonium Alkaline Anion Exchange Membranes with the Vinylbenzyl Chloride/Acrylonitrile Main Chain. Macromol Res 2021. [DOI: 10.1007/s13233-021-9054-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Chen W, Li T, Yan X, Wu X, Zhang Y, Wang X, Zhang F, Zhang S, He G. Constructing ionic channels in anion exchange membrane via a Zn2+ soft template: Experiment and molecular dynamics simulation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Vijayakumar V, Son TY, Im KS, Chae JE, Kim HJ, Kim TH, Nam SY. Anion Exchange Composite Membranes Composed of Quaternary Ammonium-Functionalized Poly(2,6-dimethyl-1,4-phenylene oxide) and Silica for Fuel Cell Application. ACS OMEGA 2021; 6:10168-10179. [PMID: 34056171 PMCID: PMC8153668 DOI: 10.1021/acsomega.1c00247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Anion exchange membranes (AEMs) with good alkaline stability and ion conductivity are fabricated by incorporating quaternary ammonium-modified silica into quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO). Quaternary ammonium with a long alkyl chain is chemically grafted to the silica in situ during synthesis. Glycidyltrimethylammoniumchloride functionalization on silica (QSiO2) is characterized by Fourier transform infrared and transmission electron microscopic techniques. The QPPO/QSiO2 membrane having an ion exchange capacity of 3.21 meq·g-1 exhibits the maximum hydration number (λ = 11.15) and highest hydroxide ion conductivity of 45.08 × 10-2 S cm-1 at 80 °C. In addition to the high ion conductivity, AEMs also exhibit good alkaline stability, and the conductivity retention of the QPPO/QSiO2-3 membrane after 1200 h of exposure in 1 M potassium hydroxide at room temperature is about 91% ascribed to the steric hindrance offered by the grafted long glycidyl trimethylammonium chain in QSiO2. The application of the QPPO/QSiO2-3 membrane to an alkaline fuel cell can yield a peak power density of 142 mW cm-2 at a current density of 323 mA cm-2 and 0.44 V, which is higher than those of commercially available FAA-3-50 Fumatech AEM (OCV: 0.91 V; maximum power density: 114 mW cm-2 at current density: 266 mA cm-2 and 0.43 V). These membranes provide valuable insights on future directions for advanced AEM development for fuel cells.
Collapse
Affiliation(s)
- Vijayalekshmi Vijayakumar
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic
of Korea
| | - Tae Yang Son
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic
of Korea
| | - Kwang Seop Im
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic
of Korea
| | - Ji Eon Chae
- Fuel
Cell Research Center, Korea Institute of
Science and Technology, Seoul 02792, Republic of Korea
| | - Hyoung Juhn Kim
- Fuel
Cell Research Center, Korea Institute of
Science and Technology, Seoul 02792, Republic of Korea
| | - Tae Hyun Kim
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang Yong Nam
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic
of Korea
| |
Collapse
|
10
|
Chae JE, Lee SY, Yoo SJ, Kim JY, Jang JH, Park HY, Park HS, Seo B, Henkensmeier D, Song KH, Kim HJ. Polystyrene-Based Hydroxide-Ion-Conducting Ionomer: Binder Characteristics and Performance in Anion-Exchange Membrane Fuel Cells. Polymers (Basel) 2021; 13:polym13050690. [PMID: 33668920 PMCID: PMC7956690 DOI: 10.3390/polym13050690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Polystyrene-based polymers with variable molecular weights are prepared by radical polymerization of styrene. Polystyrene is grafted with bromo-alkyl chains of different lengths through Friedel-Crafts acylation and quaternized to afford a series of hydroxide-ion-conducting ionomers for the catalyst binder for the membrane electrode assembly in anion-exchange membrane fuel cells (AEMFCs). Structural analyses reveal that the molecular weight of the polystyrene backbone ranges from 10,000 to 63,000 g mol-1, while the ion exchange capacity of quaternary-ammonium-group-bearing ionomers ranges from 1.44 to 1.74 mmol g-1. The performance of AEMFCs constructed using the prepared electrode ionomers is affected by several ionomer properties, and a maximal power density of 407 mW cm-2 and a durability exceeding that of a reference cell with a commercially available ionomer are achieved under optimal conditions. Thus, the developed approach is concluded to be well suited for the fabrication of next-generation electrode ionomers for high-performance AEMFCs.
Collapse
Affiliation(s)
- Ji Eon Chae
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
- Department of Chemical and Biological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea
| | - So Young Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
| | - Sung Jong Yoo
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
| | - Jin Young Kim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
| | - Jong Hyun Jang
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
| | - Hee-Young Park
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
| | - Hyun Seo Park
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
| | - Bora Seo
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
| | - Dirk Henkensmeier
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
| | - Kwang Ho Song
- Department of Chemical and Biological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea
- Correspondence: (K.H.S.); (H.-J.K.); Tel.: +82-2-3290-3307 (K.H.S.); +82-2-958-5299 (H.-J.K.)
| | - Hyoung-Juhn Kim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.E.C.); (S.Y.L.); (S.J.Y.); (J.Y.K.); (J.H.J.); (H.-Y.P.); (H.S.P.); (B.S.); (D.H.)
- Correspondence: (K.H.S.); (H.-J.K.); Tel.: +82-2-3290-3307 (K.H.S.); +82-2-958-5299 (H.-J.K.)
| |
Collapse
|
11
|
Sung S, Mayadevi T, Min K, Lee J, Chae JE, Kim TH. Crosslinked PPO-based anion exchange membranes: The effect of crystallinity versus hydrophilicity by oxygen-containing crosslinker chain length. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118774] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Wan R, Xu S, Wang J, Yang Y, Zhang D, He R. Construction of ion conducting channels by embedding hydrophilic oligomers in piperidine functionalized poly(2, 6-dimethyl-1, 4-phenylene oxide) membranes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Son TY, Kim DJ, Vijayakumar V, Kim K, Kim DS, Nam SY. Anion exchange membrane using poly(ether ether ketone) containing imidazolium for anion exchange membrane fuel cell (AEMFC). J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Ma L, Qaisrani NA, Hussain M, Li L, Jia Y, Ma S, Zhou R, Bai L, He G, Zhang F. Cyclodextrin modified, multication cross-linked high performance anion exchange membranes for fuel cell application. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Zhang S, Wang Y, Liu P, Wang X, Zhu X. Photo-cross-linked poly(N-allylisatin biphenyl)-co-poly(alkylene biphenyl)s with pendant N-cyclic quaternary ammonium as anion exchange membranes for direct borohydride/hydrogen peroxide fuel cells. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Yang K, Xu J, Shui T, Zhang Z, Wang H, Liu Q, Chen W, Shen H, Zhang H, Wang Z, Ni H. Cross-linked poly (aryl ether ketone) anion exchange membrane with high ion conductivity by two different functional imidazole side chain. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Li J, Cui Z, Tao R, Yang S, Hu M, Matindi C, Gumbi NN, Ma X, Hu Y, Fang K, Li J. Tailoring polyethersulfone/quaternary ammonium polysulfone ultrafiltration membrane with positive charge for dye and salt selective separation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiaye Li
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Zhenyu Cui
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Ran Tao
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Shuqian Yang
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Mengyang Hu
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Christine Matindi
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Nozipho N. Gumbi
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology University of South Africa, Science Campus, Florida Johannesburg South Africa
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Kuanjun Fang
- Collaborative Innovation Center for Eco‐Textiles of Shandong Province Qingdao People's Republic of China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology University of South Africa, Science Campus, Florida Johannesburg South Africa
| |
Collapse
|
18
|
Hydrophobic-hydrophilic comb-type quaternary ammonium-functionalized SEBS copolymers for high performance anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117829] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Zhang Y, Chen W, Yan X, Zhang F, Wang X, Wu X, Pang B, Wang J, He G. Ether spaced N-spirocyclic quaternary ammonium functionalized crosslinked polysulfone for high alkaline stable anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117650] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Zhang S, Wang Y, Gao X, Liu P, Wang X, Zhu X. Enhanced conductivity and stability via comb-shaped polymer anion exchange membrane incorporated with porous polymeric nanospheres. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Sung S, T.S. M, Chae JE, Kim HJ, Kim TH. Effect of increasing hydrophilic–hydrophobic block length in quaternary ammonium-functionalized poly(ether sulfone) block copolymer for anion exchange membrane fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.08.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Wei H, Tong L, Yu S, Zhang J, Dong Y, Li X, Ding Y. Non-covalently crosslinked anion exchange membranes: Effect of urea hydrogen-bonding group position. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|