1
|
Yao Y, Mu J, Li Y, Ma Y, Xu J, Shi Y, Liao J, Shen Z, Shen J. Rechargeable Multifunctional Anti-Bacterial AEMs for Electrodialysis: Improving Anti-Biological Performance via Synergistic Antibacterial Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303588. [PMID: 37697634 PMCID: PMC10602572 DOI: 10.1002/advs.202303588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Indexed: 09/13/2023]
Abstract
Constructing a functional layer on the surface of commercial membrane (as a substrate) to inhibit the formation of biofilms is an efficient strategy to prepare an antibacterial anion exchange membrane (AEM). Herein, a rechargeable multifunctional anti-biological system is reported by utilizing the mussel-inspired L-dopa connection function on commercial AEMs. Cobalt nanoparticles (Co NPs) and N-chloramine compounds are deposited on the AEM surface by a two-step modification procedure. The anti-biofouling abilities of the membranes are qualitatively and quantitatively analyzed by adopting common Gram-negative (E. coli) and Gram-positive (S. aureus & Bacillus) bacteria as model biofouling organisms. The optimized membrane exhibits a high stability concerning the NaCl solution separation performance within 240 min. Meantime, the mechanism of the anti-adhesion is un-veiled at an atomic level and molecular dynamics (MD) simulation are conducted to measure the interaction, adsorption energy and average loading by using lipopolysaccharide (LPS) of E. coli. In view of the superior performance of antibacterial surfaces, it is believed that this work could provide a valuable guideline for the design of membrane materials with resistance to biological contamination.
Collapse
Affiliation(s)
- Yuyang Yao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Junjie Mu
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Yuan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceInstitutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Yanjing Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceInstitutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Jingwen Xu
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Yuna Shi
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310014China
| | - Junbin Liao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Zhenlu Shen
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Jiangnan Shen
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| |
Collapse
|
2
|
Meng QW, Wu S, Liu M, Guo Q, Xian W, Zuo X, Wang S, Yin H, Ma S, Sun Q. Guanidinium-based covalent organic framework membrane for single-acid recovery. SCIENCE ADVANCES 2023; 9:eadh0207. [PMID: 37343103 DOI: 10.1126/sciadv.adh0207] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Acids are extensively used in contemporary industries. However, time-consuming and environmentally unfriendly processes hinder single-acid recovery from wastes containing various ionic species. Although membrane technology can overcome these challenges by efficiently extracting analytes of interest, the associated processes typically exhibit inadequate ion-specific selectivity. In this regard, we rationally designed a membrane with uniform angstrom-sized pore channels and built-in charge-assisted hydrogen bond donors that preferentially conducted HCl while exhibiting negligible conductance for other compounds. The selectivity originates from the size-screening ability of angstrom-sized channels between protons and other hydrated cations. The built-in charge-assisted hydrogen bond donor enables the screening of acids by exerting host-guest interactions to varying extents, thus acting as an anion filter. The resulting membrane exhibited exceptional permeation for protons over other cations and for Cl- over SO42- and HnPO4(3-n)- with selectivities up to 4334 and 183, respectively, demonstrating prospects for HCl extraction from waste streams. These findings will aid in designing advanced multifunctional membranes for sophisticated separation.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaochun Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qing Guo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiuhui Zuo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong Yin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Yang J, Chen Q, Afsar NU, Ge L, Xu T. Poly(alkyl-biphenyl pyridinium)-Based Anion Exchange Membranes with Alkyl Side Chains Enable High Anion Permselectivity and Monovalent Ion Flux. MEMBRANES 2023; 13:188. [PMID: 36837691 PMCID: PMC9967815 DOI: 10.3390/membranes13020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Poly(alkyl-biphenyl pyridinium)-based anion exchange membranes with alkyl side chains were synthesized for permselective anion separation. By altering the length of the grafted side chain, the hydrophilicity and other attributes of the membranes could be controlled. The QDPAB-C5 membrane with the best comprehensive performance exhibited a Cl- ion flux of 3.72 mol m-2 h-1 and a Cl-/SO42- permselectivity of 15, which are significantly better than the commercial Neosepta ACS membrane. The QDPAB-C5 membranes with distinct microscopic phase separation structures formed interconnected hydrophilic/hydrophobic ion channels and exhibited excellent ion flux and permselectivity for other anionic systems (NO3-/SO42-, Br-/SO42-, F-/SO42-, NO3-/Cl-, Br-/Cl-, and F-/Cl-) as well. Furthermore, the influence of alkyl side chain length on the membranes' ion flux and permselectivity in electrodialysis was investigated, which may be attributed to the alterations in ion channels and hydrophobic regions of the membranes. This work provides an effective strategy for the development of monovalent anion permselective membranes.
Collapse
Affiliation(s)
- Jin Yang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qian Chen
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Ren Y, Zhang A, Li L, Ma L, Jin Q, Yuan M, He G, Zhang F. Hydrogen bonding promoted electrodialysis performance of a novel blend anion exchange membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Designing monovalent selective anion exchange membranes for the simultaneous separation of chloride and fluoride from sulfate in an equimolar ternary mixture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Enhanced monovalent anion selectivity of poly(2,6-dimethyl-1,4-phenylene oxide)-based amphoteric ion exchange membranes having rough surface. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
|
8
|
Ruan H, Yu L, Yao Y, Li J, Yan J, Liao J, Shen J. Poly(Vinyl Alcohol)-Based Anion Exchange Membranes with Improved Antifouling Potentials and Reduced Swelling Ratios for Electrodialysis Application. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianlang Yan
- Shaoxing Zhongchang Chemical Co., Ltd., Shaoxing 312000, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Zhu C, Li J, Liao J, Chen Q, Xu Y, Ruan H, Shen J. Acid enrichment via electrodialyser fabricated with poly(vinyl chloride)-based anion exchange membrane: Effect of hydrophobicity of aliphatic side-chains tethered on imidazolium groups. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Wang S, Wang Z, Xu J, Liu Q, Sui Z, Du X, Cui Y, Yuan Y, Yu J, Wang Y, Chang Y. Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Yang W, Chen J, Yan J, Liu S, Yan Y, Zhang Q. Advance of click chemistry in anion exchange membranes for energy application. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jin Chen
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jing Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Shuang Liu
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Yi Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| |
Collapse
|
12
|
Co-deposition of hyperbranched polyethyleneimine and dopamine on anion exchange membrane for improved antifouling performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Pan J, Tao Y, Zhao L, Yu X, Zhao X, Wu T, Liu L. Green preparation of quaternized vinylimidazole-based anion exchange membrane by photopolymerization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Pan J, Liu L, Tao Y, Zhao L, Yu X, Wu B, Zhao X, Liu L. Green Fabrication of Tertrabutylammonium Styrene Sulfonate Cation-Exchange Membranes via a Solvent-Free Photopolymerization Strategy. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiefeng Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lingling Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yanyao Tao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lei Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaohong Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Wu
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, P. R. China
| | - Xueting Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lifen Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
15
|
Preparation of monovalent cation perm-selective membranes by controlling surface hydration energy barrier. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Wu J, Wei X, Jiang H, Zhu Y. Synthesis and properties of anion conductive polymers containing dual quaternary ammonium groups without beta-hydrogen via CuAAC click chemistry. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Shen P, Liao J, Chen Q, Ruan H, Shen J. Organic solvent resistant Kevlar nanofiber-based cation exchange membranes for electrodialysis applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Zhu H, Sun Z, Cao H, Wang B, Zhao J, Pan J, Xu G, Jin Z, Yan F. Highly Conductive and Dimensionally Stable Anion Exchange Membranes Based on Poly(dimethoxybenzene- co-methyl 4-formylbenzoate) Ionomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hairong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhe Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huixing Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bowen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Junliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ji Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guodong Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
A two-step strategy for the preparation of anion-exchange membranes based on poly(vinylidenefluoride-co-hexafluoropropylene) for electrodialysis desalination. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Exploring the acid enrichment application of piperidinium-functionalized cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes in electrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Li M, Li W, Zhang X, Wu C, Han X, Chen Y. Polyvinyl alcohol-based monovalent anion selective membranes with excellent permselectivity in selectrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Pal S, Mondal R, Guha S, Chatterjee U, Jewrajka SK. Crosslinked terpolymer anion exchange membranes for selective ion separation and acid recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118459] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Liao J, Chen Q, Pan N, Yu X, Gao X, Shen J, Gao C. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116793] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Liao J, Yu X, Chen Q, Gao X, Ruan H, Shen J, Gao C. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains: Investigating the effect of hydrophobic alkyl spacer length. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117818] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Wei B, Feng J, Chen C, Zhong S, Liao S, Yu Y, Li X. Highly permselective tadpole-type ionic anion exchange membranes for electrodialysis desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Hao L, Wang C, Chen Q, Yu X, Liao J, Shen J, Gao C. A facile approach to fabricate composite anion exchange membranes with enhanced ionic conductivity and dimensional stability for electrodialysis. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Ingabire PB, Pan X, Haragirimana A, Li N, Hu Z, Chen S. Enhanced conduction capability of nanocomposite membrane of quaternized poly (arylene ether sulfone)s covalently bonded with graphitic carbon nitride nanosheets for fuel cells. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Pal S, Mondal R, Guha S, Chatterjee U, Jewrajka SK. Homogeneous phase crosslinked poly(acrylonitrile-co-2-acrylamido-2-methyl-1-propanesulfonic acid) conetwork cation exchange membranes showing high electrochemical properties and electrodialysis performance. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121680] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Koronka D, Matsumoto A, Otsuji K, Miyatake K. Partially fluorinated copolymers containing pendant piperidinium head groups as anion exchange membranes for alkaline fuel cells. RSC Adv 2019; 9:37391-37402. [PMID: 35542305 PMCID: PMC9075601 DOI: 10.1039/c9ra07775h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/11/2019] [Indexed: 01/22/2023] Open
Abstract
A new series of partially fluorinated copolymers with varying alkyl side chain length (C3, C6 and C9) and piperidinium head groups have been synthesized and characterized in detail in an effort to improve membrane properties for alkaline fuel cell applications. The copolymers (QPAF4-Cx-pip) provided thin and bendable membranes by solution casting, and achieved high hydroxide ion conductivity up to 97 mS cm−1 in water at 80 °C. Membrane properties such as water absorbability, conductivity, and mechanical properties were tunable with the side chain length. The copolymer main chain and the piperidinium groups were both alkaline stable and the membranes retained high conductivity in 4 M KOH at 80 °C for as long as 1000 h, however, conductivity was lost in 8 M KOH due to Hofmann degradation of the side chain. QPAF4-C3-pip copolymer with the best-balanced properties as anion exchange membrane functioned well in a hydrogen/oxygen alkaline fuel cell to achieve 226 mW cm−2 peak power density at 502 mA cm−2 current density under fully humidified conditions with no back pressure. Piperidinium functionalized partially fluorinated copolymers with varying alkyl spacer length were synthesized and evaluated as anion exchange membranes to achieve improved performance in alkaline fuel cells.![]()
Collapse
Affiliation(s)
- Daniel Koronka
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Kofu 400-8510
- Japan
| | - Akinobu Matsumoto
- Fuel Cell Nanomaterials Center
- University of Yamanashi
- Kofu 400-8510
- Japan
| | - Kanji Otsuji
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Kofu 400-8510
- Japan
| | - Kenji Miyatake
- Fuel Cell Nanomaterials Center
- University of Yamanashi
- Kofu 400-8510
- Japan
- Clean Energy Research Center
| |
Collapse
|