1
|
Mesquita CRS, Gómez AOC, Cotta CPN, Cotta RM. Comparison of Different Polymeric Membranes in Direct Contact Membrane Distillation and Air Gap Membrane Distillation Configurations. MEMBRANES 2025; 15:91. [PMID: 40137043 PMCID: PMC11943998 DOI: 10.3390/membranes15030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025]
Abstract
Membrane distillation (MD) is an evolving thermal separation technique most frequently aimed at water desalination, compatible with low-grade heat sources such as waste heat from thermal engines, solar collectors, and high-concentration photovoltaic panels. This study presents a comprehensive theoretical-experimental evaluation of three commercial membranes of different materials (PE, PVDF, and PTFE), tested for two distinct MD modules-a Direct Contact Membrane Distillation (DCMD) module and an Air Gap Membrane Distillation (AGMD) module-analyzing the impact of key operational parameters on the performance of the individual membranes in each configuration. The results showed that increasing the feed saline concentration from 7 g/L to 70 g/L led to distillate flux reductions of 12.2% in the DCMD module and 42.9% in the AGMD one, averaged over the whole set of experiments. The increase in feed temperature from 65 °C to 85 °C resulted in distillate fluxes up to 2.36 times higher in the DCMD module and 2.70 times higher in the AGMD one. The PE-made membrane demonstrated the highest distillate fluxes, while the PVDF and PTFE membranes exhibited superior performance under high-salinity conditions in the AGMD module. Membranes with high contact angles, such as PTFE with 143.4°, performed better under high salinity conditions. Variations in operational parameters, such as flow rate and temperature, markedly affect the temperature and concentration polarization effects. The analyses underscored the necessity of a careful selection of membrane type for each distillation configuration by the specific characteristics of the process and its operational conditions. In addition to experimental findings, the proposed heat and mass transfer-reduced model showed good agreement with experimental data, with deviations within ±15%, effectively capturing the influence of operational parameters. Theoretical predictions showed good agreement with experimental data, confirming the model's validity, which can be applied to optimization methodologies to improve the membrane distillation process.
Collapse
Affiliation(s)
- Cristiane Raquel Sousa Mesquita
- Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Mechanical Engineering Department, POLI & COPPE/UFRJ, Federal University of Rio de Janeiro, 360 Av. Moniz de Aragão, CT-2–Cidade Universitária, Rio de Janeiro 21941-594, Brazil; (C.R.S.M.); (A.O.C.G.)
| | - Abdul Orlando Cárdenas Gómez
- Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Mechanical Engineering Department, POLI & COPPE/UFRJ, Federal University of Rio de Janeiro, 360 Av. Moniz de Aragão, CT-2–Cidade Universitária, Rio de Janeiro 21941-594, Brazil; (C.R.S.M.); (A.O.C.G.)
| | - Carolina Palma Naveira Cotta
- Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Mechanical Engineering Department, POLI & COPPE/UFRJ, Federal University of Rio de Janeiro, 360 Av. Moniz de Aragão, CT-2–Cidade Universitária, Rio de Janeiro 21941-594, Brazil; (C.R.S.M.); (A.O.C.G.)
| | - Renato Machado Cotta
- Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Mechanical Engineering Department, POLI & COPPE/UFRJ, Federal University of Rio de Janeiro, 360 Av. Moniz de Aragão, CT-2–Cidade Universitária, Rio de Janeiro 21941-594, Brazil; (C.R.S.M.); (A.O.C.G.)
- Laboratory of Sustainable Energies Technologies, LATES-GTM, Navy Research Institute, IPqM/CTMRJ, General Directorate of Nuclear and Technological Development, DGDNTM, Brazilian Navy, 02 R. Ipiru–Cacuia, Rio de Janeiro 21931-095, Brazil
| |
Collapse
|
2
|
Cui Q, Gutierrez L, Li F, Tu T, Shang Y, Yan S. Waste heat recovery enhancement in the CO2 chemical absorption process by hydrophobic-hydrophilic composite ceramic membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Curcino I, Júnior PC, Gómez AC, Chenche LP, Lima J, Naveira-Cotta C, Cotta R. Analysis of effective thermal conductivity and tortuosity modeling in membrane distillation simulation. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Wang Z, Jia Z, Li R, Gao Q, Gu Z. Analysis and Experimental Study on Water Vapor Partial Pressure in the Membrane Distillation Process. MEMBRANES 2022; 12:802. [PMID: 36005717 PMCID: PMC9413311 DOI: 10.3390/membranes12080802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In membrane distillation, the vapor pressure difference is the driving force of mass transfer. The vapor pressure is generally assumed by the saturation pressure and calculated by the Antoine equation. However, in the actual operation process, the feed solutions usually flow in a non-equilibrium state, which does not meet the theoretical and measurement conditions of the vapor-liquid equilibrium (VLE) state. This study tested the actual water vapor pressure of the pure water, lithium bromide (LiBr) solution, lithium chloride (LiCl) solution, and calcium chloride (CaCl2) solution under different flow conditions. The results showed that the actual water vapor pressure was lower than the saturation pressure overall, and the difference increased with temperature but decreased with the mass concentration. Therefore, in vacuum membrane distillation (VMD), air gap membrane distillation (AGMD), and sweeping gas membrane distillation (SGMD), the membrane flux calculated by water vapor saturation pressure was higher than the actual membrane flux, and the relative difference decreased and was less than 10% after 60 °C. In direct contact membrane distillation (DCMD), the water vapor pressure difference on both membrane sides was almost the same by using the saturation vapor pressure or the tested data since the pressure errors were partially offset in parallel flow or counter-flow modes.
Collapse
|
5
|
Zou D, Kim HW, Jeon SM, Lee YM. Fabrication and modification of PVDF/PSF hollow-fiber membranes for ginseng extract and saline water separations via direct contact membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Enhanced anti-wetting and anti-fouling properties of composite PFPE/PVDF membrane in vacuum membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Liu J, Albdoor AK, Lin W, Hai FI, Ma Z. Membrane fouling in direct contact membrane distillation for liquid desiccant regeneration: Effects of feed temperature and flow velocity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Rauter MT, Schnell SK, Kjelstrup S. Cassie-Baxter and Wenzel States and the Effect of Interfaces on Transport Properties across Membranes. J Phys Chem B 2021; 125:12730-12740. [PMID: 34755514 PMCID: PMC8630791 DOI: 10.1021/acs.jpcb.1c07931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass transfer across a liquid-repelling gas permeable membrane is influenced by the state(s) of the liquid-vapor interface(s) on the surface of the membrane, the pore geometry, and the solid-fluid interactions inside the membrane. By tuning the different local contributions, it is possible to enhance the temperature difference-driven mass flux across the membrane for a constant driving force. Non-equilibrium molecular dynamics simulations were used to simulate a temperature difference-driven mass flux through a gas permeable membrane with the evaporating liquid on one side and the condensing liquid on the other. Both sides were simulated for Wenzel- and Cassie-Baxter-like states. The interaction between the fluid and the solid inside the gas permeable membrane varied between the wetting angles of θ = 125° and θ = 103°. For a constant driving force, the Cassie-Baxter state led to an increased mass flux of almost 40% in comparison to the Wenzel state (given a small pore resistance). This difference was caused by an insufficient supply of vapor particles at the pore entrance in the Wenzel state. The difference between the Wenzel and Cassie-Baxter states decreased with increasing resistance of the pore. The condensing liquid-vapor interface area contributed in the same manner to the overall transport resistance as the evaporating liquid-vapor interface area. A higher repulsion between the fluid and the solid inside the membrane decreased the overall resistance.
Collapse
Affiliation(s)
- Michael T Rauter
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sondre K Schnell
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Signe Kjelstrup
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
9
|
Wu X, Yang L, Shao W, Lu X, Liu X, Li M. Fabrication of high performance TFN membrane incorporated with graphene oxide via support-free interfacial polymerization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148503. [PMID: 34174601 DOI: 10.1016/j.scitotenv.2021.148503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
A high-performance thin film nanocomposite (TFN) membrane containing graphene oxide (GO) nanosheets was constructed using a support-free interfacial polymerization (SFIP) technique. In this study, an ultrathin composited polyamide (PA) nanofilm was synthesized at the free piperazine (PIP)-GO suspension/trimesoyl chloride (TMC) interface, followed by transfer onto a polysulfone (PSf) UF substrate. The impact of GO loading (0, 0.1, 0.5, or 1 mg/mL) on the physiochemical properties, surface morphology, and hydrophilicity of the composited PA layer and membrane separation performance was investigated. It was found that the GO-modified TFN membranes showed ultra-high hydrophilicity due to the increase in the number of carboxyl and hydroxyl groups in the PA layer. We propose that GO nanosheets play a key role in improving membrane permeability because a strong hydration layer is formed between the water molecules and GO (embedded in the PA layer), acting as a protective film and minimizing the chance of foulants contacting the membrane surface. Compared with TFC, TFN-GO-0.5 simultaneously exhibited a higher water permeability of up to 12.8 L·m-2·h-1·bar-1 (58.1% higher than the TFC membrane) and a higher Na2SO4 rejection of approximately 98.4%. Moreover, the introduction of GO nanosheets into TFN membrane resulted in an improved antifouling performance. This facile SFIP method reveals the potential of GO nanosheets for the development of high performance TFN membranes.
Collapse
Affiliation(s)
- Xiaona Wu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenli Shao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xin Lu
- Petrochina North China Gas Marketing Company, Beijing 100011, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Experimental mass transfer comparison between vacuum and direct contact membrane distillation for the concentration of carbonate solutions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Liu J, Guo H, Sun Z, Li B. Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Rauter MT, Schnell SK, Hafskjold B, Kjelstrup S. Thermo-osmotic pressure and resistance to mass transport in a vapor-gap membrane. Phys Chem Chem Phys 2021; 23:12988-13000. [PMID: 34085062 DOI: 10.1039/d0cp06556k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the transport of fluid through a vapor-gap membrane. The transport due to a membrane temperature difference was investigated under isobaric as well as non-isobaric conditions. Such a concept is relevant for water cleaning and power production purposes. A coarse-grained water model was used for modelling transport through pores of different diameters and lengths. The wall-fluid interactions were set so as to mimic hydrophobic interactions between water and membrane. The mass transport through the membrane scaled linearly with the applied temperature difference. Soret equilibria were obtained when the thermo-osmotic pressure was 18 bar K-1. The state of the Soret equilibrium did not depend on the pore size or pore length as expected. We show that the Soret equilibrium cannot be sustained by a gradient in vapor pressure. The fluxes of heat and mass were used to compute the total resistances to the transport of heat and mass.
Collapse
Affiliation(s)
- Michael T Rauter
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Sondre K Schnell
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Bjørn Hafskjold
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Signe Kjelstrup
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
13
|
Liu L, He H, Wang Y, Tong T, Li X, Zhang Y, He T. Mitigation of gypsum and silica scaling in membrane distillation by pulse flow operation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Borjigin B, Liu L, Yu L, Xu L, Zhao C, Wang J. Influence of incorporating beta zeolite nanoparticles on water permeability and ion selectivity of polyamide nanofiltration membranes. J Environ Sci (China) 2020; 98:77-84. [PMID: 33097161 DOI: 10.1016/j.jes.2020.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
A novel polyamide (PA) thin film nanocomposite (TFN) membrane modified with Beta (β) zeolite was prepared by interfacial polymerization on a poly (ether sulfone) (PES) ultrafiltration membrane. Compared with the PA thin film composite (TFC) membrane, the introduction of β zeolite with porous structure notably increased the water flux of TFN membrane. Because the β zeolite with tiny-sized and well-defined inner-porous acted as prior flow channels for water molecules and a barrier for the sulfate ions. The successful introduction of β zeolite into the (PA) selective layer and their dispersion in the corresponding layer were verified by scanning electron microscope (SEM) and atomic force microscopy (AFM). Water contact angle, zeta potential measurements were used to characterize the changes of membrane surface properties before and after incorporating the β zeolite. With the β zeolite introducing, the water contact angle of modified TFN membrane was decreased to 47.8°, which was benefited to improve the water flux. Meanwhile, the negative charges of the modified TFN membrane was increased, resulting in an enhancement of separation effect on SO42- and Cl-. In term of nanofiltration (NF) experiments, the highest pure water flux of the TFN membranes reached up to 81.22 L m-2 hr-1 under operating pressure of 0.2 MPa, which was 2.5 times as much as the pristine TFC membrane.
Collapse
Affiliation(s)
- Baoleerhu Borjigin
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixue Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ling Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Changwei Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Liu J, Li X, Zhang W, Li B, Liu C. Superhydrophobic-slip surface based heat and mass transfer mechanism in vacuum membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Facile preparation of superhydrophobic PVDF microporous membranes with excellent anti-fouling ability for vacuum membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Li M, Li K, Wang L, Zhang X. Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: Performance and economic evaluation. WATER RESEARCH 2020; 172:115488. [PMID: 31951948 DOI: 10.1016/j.watres.2020.115488] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
The forward osmosis-membrane distillation (FO-MD) hybrid process has shown great promise in achieving zero liquid discharge in the textile industry, recovering valuable dye molecules while producing large amounts of clean water. However, the progress of this technology seems to have stagnated with the direct coupling of commercial asymmetric FO and MD membranes, because water management in the system is found to be rather complicated owing to the processing of the different membranes. Herein, we propose, for the first time, an FO-MD hybrid process using a custom-made self-standing and symmetric membrane and a hydrophobic polytetrafluoroethylene membrane in the FO and MD units, respectively. Three types of operation modes were investigated to systematically study the process performance in the concentration treatment of model textile wastewater; two commercial FO membranes were also tested for comparison. Owing to its low fouling propensity and lack of an internal concentration polarization effect, the water transfer rate of our symmetric FO membrane quickly reaches equilibrium with that in the MD unit, resulting in continuous and stable operation. Consequently, the hybrid process using the symmetric FO membrane was found to consume the least energy, as indicated by its lowest total cost in both lab- and large-scale systems. Overall, our study provides a new strategy for using a symmetric FO membrane in the FO-MD hybrid process and highlights its great potential for use in the treatment of textile wastewater.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kun Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xuan Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
18
|
Song L, Huang Q, Huang Y, Bi R, Xiao C. An electro-thermal braid-reinforced PVDF hollow fiber membrane for vacuum membrane distillation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|