1
|
Gao B, Zhang C, Dong R, Chen Y, Zhang S. Facile fabrication of reusable starch sponge with adjustable crosslinked networks for efficient nest-trap and in situ photodegrade methylene blue. Carbohydr Polym 2023; 322:121342. [PMID: 37839847 DOI: 10.1016/j.carbpol.2023.121342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023]
Abstract
The fabrication of reusable natural polysaccharide sponges with nanoscale dispersed photocatalysts to achieve robust photocatalytic efficiency is desirable yet challenging. Herein, inspired by the nesting behavior when fishing, we designed reusable starch sponge with chemically anchored nano-ZnO into carboxylated starch matrix by thermoplastic interfacial reactions and solvent replacement for absorbing and photodegrading methylene blue (MB) in situ. The plasticization and interfacial reactions promoted a simultaneous increase in the reactivity of the starch hydroxyl/carboxyl groups and the specific surface area of ZnO. Meanwhile, the crosslinked networks of starch sponge could be adjusted by varying the ZnO and carboxylic groups contents. The results of photodegradation experiments revealed the recyclable closed-loop process of attraction-trapping-photodegradation of MB was successfully realized, achieving the effect of killing three birds with one stone. The reusable starch sponge with homogeneous dispersion of nano-ZnO by constructing three-dimensional porous channels possessed the high enrichment capacity and the remarkable photocatalysis efficiency with 150 mg/L ZnO. Under UV irradiation, the starch sponge degraded 97 % of MB with 1.67 × 10-3 min-1 photodegradation rate constant even after five cycles, which exceeded most existing photocatalytic systems. Overall, the reusable starch sponge with adjustable structure provided new insights for multifunctional bio-based photocatalyst loading systems.
Collapse
Affiliation(s)
- Bingbing Gao
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Congyun Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Ran Dong
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yukun Chen
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China; Guangdong Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Zhou X, Shevate R, Huang D, Cao T, Shen X, Hu S, Mane AU, Elam JW, Kim JH, Elimelech M. Ceramic thin-film composite membranes with tunable subnanometer pores for molecular sieving. Nat Commun 2023; 14:7255. [PMID: 37945562 PMCID: PMC10636005 DOI: 10.1038/s41467-023-42495-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Ceramic membranes are a promising alternative to polymeric membranes for selective separations, given their ability to operate under harsh chemical conditions. However, current fabrication technologies fail to construct ceramic membranes suitable for selective molecular separations. Herein, we demonstrate a molecular-level design of ceramic thin-film composite membranes with tunable subnanometer pores for precise molecular sieving. Through burning off the distributed carbonaceous species of varied dimensions within hybrid aluminum oxide films, we created membranes with tunable molecular sieving. Specifically, the membranes created with methanol showed exceptional selectivity toward monovalent and divalent salts. We attribute this observed selectivity to the dehydration of the large divalent ions within the subnanometer pores. As a comparison, smaller monovalent ions can rapidly permeate with an intact hydration shell. Lastly, the flux of neutral solutes through each fabricated aluminum oxide membrane was measured for the demonstration of tunable separation capability. Overall, our work provides the scientific basis for the design of ceramic membranes with subnanometer pores for molecular sieving using atomic layer deposition.
Collapse
Affiliation(s)
- Xuechen Zhou
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Rahul Shevate
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, USA
| | - Dahong Huang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Xin Shen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Shu Hu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Anil U Mane
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jeffrey W Elam
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Sengupta B, Dong Q, Khadka R, Behera DK, Yang R, Liu J, Jiang J, Keblinski P, Belfort G, Yu M. Carbon-doped metal oxide interfacial nanofilms for ultrafast and precise separation of molecules. Science 2023; 381:1098-1104. [PMID: 37676942 DOI: 10.1126/science.adh2404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Membranes with molecular-sized, high-density nanopores, which are stable under industrially relevant conditions, are needed to decrease energy consumption for separations. Interfacial polymerization has demonstrated its potential for large-scale production of organic membranes, such as polyamide desalination membranes. We report an analogous ultrafast interfacial process to generate inorganic, nanoporous carbon-doped metal oxide (CDTO) nanofilms for precise molecular separation. For a given pore size, these nanofilms have 2 to 10 times higher pore density (assuming the same tortuosity) than reported and commercial organic solvent nanofiltration membranes, yielding ultra-high solvent permeance, even if they are thicker. Owing to exceptional mechanical, chemical, and thermal stabilities, CDTO nanofilms with designable, rigid nanopores exhibited long-term stable and efficient organic separation under harsh conditions.
Collapse
Affiliation(s)
- Bratin Sengupta
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Qiaobei Dong
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Rajan Khadka
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Dinesh Kumar Behera
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Ruizhe Yang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Ji Jiang
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center of Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Pawel Keblinski
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center of Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Miao Yu
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
4
|
Ajibade TF, Tian H, Lasisi KH, Zhang K. Bio-inspired PDA@WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Xiong S, Qian X, Zhong Z, Wang Y. Atomic layer deposition for membrane modification, functionalization and preparation: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
|
7
|
Ewis D, Ismail NA, Hafiz M, Benamor A, Hawari AH. Nanoparticles functionalized ceramic membranes: fabrication, surface modification, and performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12256-12281. [PMID: 33410066 DOI: 10.1007/s11356-020-11847-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Membrane technologies are used intensively for desalination and wastewater treatment. Water filtration using ceramic membranes exhibited high performance compared with polymeric membranes due to various properties such as high resistance to fouling, permeability, rejection rate, and chemical stability. Recently, the performance of nanocomposite ceramic membranes was improved due to the development in nanotechnology. This article focusses on the development of porous ceramic membranes and nanomaterial functionalized ceramic membranes for water filtration applications. At the beginning, various fabrication methods of ceramic membranes were described, and the effect of surface modification techniques on the membrane intrinsic properties was reviewed. Then, the performance of nanoparticles functionalized ceramic membranes was evaluated in terms of physicochemical properties, rejection rate, and water permeability. This work can help new entrants and established researchers to become familiar with the current challenges and developments of nanoparticle-incorporated ceramic membranes for water filtration applications.
Collapse
Affiliation(s)
- Dina Ewis
- Environmental Engineering Master Program, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Norhan Ashraf Ismail
- Environmental Engineering Master Program, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - MhdAmmar Hafiz
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P.O.Box 2713, Doha, Qatar
| | - Abdelbaki Benamor
- Gas Processing Centre, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P.O.Box 2713, Doha, Qatar.
| |
Collapse
|
8
|
Chaudhury S, Wormser E, Harari Y, Edri E, Nir O. Tuning the Ion-Selectivity of Thin-Film Composite Nanofiltration Membranes by Molecular Layer Deposition of Alucone. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53356-53364. [PMID: 33190482 PMCID: PMC7735666 DOI: 10.1021/acsami.0c16569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work addresses a key challenge of tailoring the ion selectivity of a thin-film composite nanofiltration membrane to a specific application, such as water softening, without altering the water permeability. We modified the active surface of a commercial NF270 membrane by molecular layer deposition (MLD) of ethylene glycol-Al (EG-alucone). With increasing deposition cycles, we found that the MLD precursors first infiltrated and deposited in the active layer of NF270, then inflated the active layer, and finally deposited on the surface as a distinct EG-alucone layer. The deposition process changed the morphology of the membrane active layer and decreased the overall density of its fixed negative charge by embedding the positively charged EG-alucone. Filtration experiments revealed that these modifications affected the ion separation properties of the membrane without significantly hindering the water permeability. Specifically, the permeation of Na+ increased relative to that of Mg2+, as indicated by the permselectivity of Na+ salts over Mg2+ salts. The changes in permselectivities with an increasing number of MLD cycles were rationalized using the dielectric, steric, and electrostatic ion exclusion mechanisms, which are related to the membrane material, pore size, and fixed charge, respectively. These relations open a path for the rational design of nanofiltration membranes with tailored selectivity by tuning the properties of the MLD layer. Filtration results of natural brackish groundwater using the MLD modified membranes agreed with the single salt experiments. As a result, water hardness was 26% lower for the permeate obtained using the MLD-modified membranes, which were found stable even during a 24 h filtration run. These results highlight the practical potential of this approach in enhancing water softening efficiency.
Collapse
Affiliation(s)
- Sanhita Chaudhury
- Blaustein
Institutes for Desert Research, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer-Sheva 8499000, Israel
| | - Eyal Wormser
- Department
of Chemical Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
| | - Yuval Harari
- Department
of Chemical Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
| | - Eran Edri
- Department
of Chemical Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
| | - Oded Nir
- Blaustein
Institutes for Desert Research, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer-Sheva 8499000, Israel
| |
Collapse
|
9
|
Miao A, Wei M, Xu F, Wang Y. Influence of membrane hydrophilicity on water permeability: An experimental study bridging simulations. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Li C, Sun W, Lu Z, Ao X, Li S. Ceramic nanocomposite membranes and membrane fouling: A review. WATER RESEARCH 2020; 175:115674. [PMID: 32200336 DOI: 10.1016/j.watres.2020.115674] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 05/26/2023]
Abstract
Membrane technologies have broad applications in the removal of contaminants from drinking water and wastewater. In recent decades, ceramic membrane has made rapid progress in industrial/municipal wastewater treatment and drinking water treatment owing to their advantageous properties over conventional polymeric membrane. The beneficial characteristics of ceramic membranes include fouling resistance, high permeability, good recoverability, chemical stability, and long life time, which have found applications with the recent innovations in both fabrication methods and nanotechnology. Therefore, ceramic membranes hold great promise for potential applications in water treatment. This paper mainly reviews the progress in the research and development of ceramic membranes, with key focus on porous ceramic membranes and nanomaterial-functionalized ceramic membranes for nanofiltration or catalysis. The current state of the available ceramic membranes in industry and academia, and their potential advantages, limitations and applications are reviewed. The last section of the review focuses on ceramic membrane fouling and the efforts towards ceramic membrane fouling mitigation. The advances in ceramic membrane technologies have rarely been widely reviewed before, therefore, this review could be served as a guide for the new entrants to the field, as well to the established researchers.
Collapse
Affiliation(s)
- Chen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Simiao Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Tuning and controlling photocatalytic performance of TiO2/kaolinite composite towards ciprofloxacin: Role of 0D/2D structural assembly. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Lan Q, Wang Y. Carbonization of gradient phenolics filled in macroporous substrates for high-flux tight membranes: Toward ultrafiltration of polypeptides. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Perrotta A, Berger R, Muralter F, Coclite AM. Mesoporous ZnO thin films obtained from molecular layer deposited “zincones”. Dalton Trans 2019; 48:14178-14188. [PMID: 31506655 DOI: 10.1039/c9dt02824b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis of MLD-derived mesoporous ZnO with 20% of porosity is demonstrated and studied by advanced in situ characterization techniques.
Collapse
Affiliation(s)
- Alberto Perrotta
- Institute of Solid State Physics
- NAWI Graz
- Graz University of Technology
- 8010 Graz
- Austria
| | - Richard Berger
- Institute of Solid State Physics
- NAWI Graz
- Graz University of Technology
- 8010 Graz
- Austria
| | - Fabian Muralter
- Institute of Solid State Physics
- NAWI Graz
- Graz University of Technology
- 8010 Graz
- Austria
| | - Anna Maria Coclite
- Institute of Solid State Physics
- NAWI Graz
- Graz University of Technology
- 8010 Graz
- Austria
| |
Collapse
|