1
|
Lou Y, Xi J, Meng L, Yan Z, Deng W, Bian H, Xiao H, Wu W. High-permeance nanocellulose/ZnO hybrid membranes with photo-induced anti-fouling performance for wastewater purification. Carbohydr Polym 2025; 348:122807. [PMID: 39562082 DOI: 10.1016/j.carbpol.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
A hybrid ultrafiltration membrane based on nanocellulose and zinc oxide nanoparticles (ZnO NPs) was prepared by simple layered filtration without any chemical modification. Microscopic morphology analysis showed that the loading ZnO NPs significantly increased the membrane roughness, and wettability test demonstrated that the membrane surface possessed underwater superoleophobicity. Due to the "puncture effect" of the embedded ZnO NPs, abundant nanochannels were formed in the nanocellulose membrane and the highest water permeance of 5439.7 L·m-2·h-1·bar-1 was achieved. The hybrid membranes exhibited high rejection of nanoparticles larger than 20 nm and macromolecules with molecular weights higher than 100 kDa. Furthermore, ZnO NPs significantly improved the wet tensile strength of membrane. The hybrid membranes achieved high separation efficiency of nano-sized emulsions via size exclusion and demulsification effect, as well as the efficient removal of organic dyes and antibiotics via filtration-adsorption. The combination of underwater superoleophobicity and photocatalytic self-cleaning performance effectively solved the problem of a sharp decrease in permeance caused by oil contamination. This type of nanocellulose/ZnO hybrid membrane, which integrates high permeance, high filtration accuracy, and photocatalytic anti-fouling performance in one design, offers an innovative approach to the preparation of nanocellulose membranes for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zifei Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Deng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Wang J, Abbas SC, Li L, Walker CC, Ni Y, Cai Z. Cellulose Membranes: Synthesis and Applications for Water and Gas Separation and Purification. MEMBRANES 2024; 14:148. [PMID: 39057656 PMCID: PMC11279174 DOI: 10.3390/membranes14070148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and repel specific species. Membranes can purify air and water by allowing only air and water molecules to pass through, while preventing contaminants such as microorganisms and particles, or to separate a target gas or vapor, such as H2 and CO2, from other gases. The higher the flux and selectivity, the better a material is for membranes. The desirable performance can be tuned through material type (polymers, ceramics, and biobased materials), microstructure (porosity and tortuosity), and surface chemistry. Most membranes are made from plastic from petroleum-based resources, contributing to global climate change and plastic pollution. Cellulose can be an alternative sustainable resource for making renewable membranes. Cellulose exists in plant cell walls as natural fibers, which can be broken down into smaller components such as cellulose fibrils, nanofibrils, nanocrystals, and cellulose macromolecules through mechanical and chemical processing. Membranes made from reassembling these particles and molecules have variable pore architecture, porosity, and separation properties and, therefore, have a wide range of applications in nano-, micro-, and ultrafiltration and forward osmosis. Despite their advantages, cellulose membranes face some challenges. Improving the selectivity of membranes for specific molecules often comes at the expense of permeability. The stability of cellulose membranes in harsh environments or under continuous operation needs further improvement. Research is ongoing to address these challenges and develop advanced cellulose membranes with enhanced performance. This article reviews the microstructures, fabrication methods, and potential applications of cellulose membranes, providing some critical insights into processing-structure-property relationships for current state-of-the-art cellulosic membranes that could be used to improve their performance.
Collapse
Affiliation(s)
- Jinwu Wang
- Forest Products Laboratory, U.S. Forest Service, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Syed Comail Abbas
- Department of Chemical and Biological Engineering, University of Maine, 5737 Jenness Hall, Orono, ME 04469, USA
| | - Ling Li
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Colleen C. Walker
- Process Development Center, University of Maine, 5737 Jenness Hall, Orono, ME 04469, USA
| | - Yonghao Ni
- Department of Chemical and Biological Engineering, University of Maine, 5737 Jenness Hall, Orono, ME 04469, USA
| | - Zhiyong Cai
- Forest Products Laboratory, U.S. Forest Service, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| |
Collapse
|
3
|
Zubair M, Yasir M, Ponnamma D, Mazhar H, Sedlarik V, Hawari AH, Al-Harthi MA, Al-Ejji M. Recent advances in nanocellulose-based two-dimensional nanostructured membranes for sustainable water purification: A review. Carbohydr Polym 2024; 329:121775. [PMID: 38286528 DOI: 10.1016/j.carbpol.2024.121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024]
Abstract
Nanocellulose (NC), a one-dimensional nanomaterial, is considered a sustainable material for water and wastewater purification because of its promising hydrophilic surface and mechanical characteristics. In this regard, nanostructured membranes comprising NC and two-dimensional (2D) nanomaterials emerged as advanced membranes for efficient and sustainable water purification. This article critically reviews the recent progress on NC-2D nanostructured membranes for water and wastewater treatment. The review highlights the main techniques employed to fabricate NC-2D nanostructured membranes. The physicochemical properties, including hydrophilicity, percent porosity, surface roughness, structure, and mechanical and thermal stability, are summarized. The key performance indicators such as permeability, rejection, long operation stability, antifouling, and interaction mechanisms are thoroughly discussed to evaluate the role of NC and 2D nanomaterials. Finally, summary points and future development work are highlighted to overcome the challenges for potential practical applications. This review contributes to the design and development of advanced membranes to solve growing water pollution concerns in a sustainable manner.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31451, Saudi Arabia.
| | - Muhammad Yasir
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Deepalekshmi Ponnamma
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hassam Mazhar
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mamdouh Ahmed Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Liljeström T, Kontturi KS, Durairaj V, Wester N, Tammelin T, Laurila T, Koskinen J. Protein Adsorption and Its Effects on Electroanalytical Performance of Nanocellulose/Carbon Nanotube Composite Electrodes. Biomacromolecules 2023; 24:3806-3818. [PMID: 37433182 PMCID: PMC10428158 DOI: 10.1021/acs.biomac.3c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Protein fouling is a critical issue in the development of electrochemical sensors for medical applications, as it can significantly impact their sensitivity, stability, and reliability. Modifying planar electrodes with conductive nanomaterials that possess a high surface area, such as carbon nanotubes (CNTs), has been shown to significantly improve fouling resistance and sensitivity. However, the inherent hydrophobicity of CNTs and their poor dispersibility in solvents pose challenges in optimizing such electrode architectures for maximum sensitivity. Fortunately, nanocellulosic materials offer an efficient and sustainable approach to achieving effective functional and hybrid nanoscale architectures by enabling stable aqueous dispersions of carbon nanomaterials. Additionally, the inherent hygroscopicity and fouling-resistant nature of nanocellulosic materials can provide superior functionalities in such composites. In this study, we evaluate the fouling behavior of two nanocellulose (NC)/multiwalled carbon nanotube (MWCNT) composite electrode systems: one using sulfated cellulose nanofibers and another using sulfated cellulose nanocrystals. We compare these composites to commercial MWCNT electrodes without nanocellulose and analyze their behavior in physiologically relevant fouling environments of varying complexity using common outer- and inner-sphere redox probes. Additionally, we use quartz crystal microgravimetry with dissipation monitoring (QCM-D) to investigate the behavior of amorphous carbon surfaces and nanocellulosic materials in fouling environments. Our results demonstrate that the NC/MWCNT composite electrodes provide significant advantages for measurement reliability, sensitivity, and selectivity over only MWCNT-based electrodes, even in complex physiological monitoring environments such as human plasma.
Collapse
Affiliation(s)
- Touko Liljeström
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Katri S. Kontturi
- Sustainable
Products and Materials, VTT Technical Research
Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Vasuki Durairaj
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Sustainable
Products and Materials, VTT Technical Research
Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Niklas Wester
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Tekla Tammelin
- Sustainable
Products and Materials, VTT Technical Research
Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Tomi Laurila
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Jari Koskinen
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
5
|
Joshi R, Sebat N, Chi K, Khan M, Johnson KI, Alhamzani AG, Habib MA, Lindstrom T, Hsiao BS. Low Fouling Nanostructured Cellulose Membranes for Ultrafiltration in Wastewater Treatment. MEMBRANES 2023; 13:membranes13020147. [PMID: 36837650 PMCID: PMC9964168 DOI: 10.3390/membranes13020147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/01/2023]
Abstract
Ultrafiltration (UF) is a common technique used in wastewater treatments. However, the issue of membrane fouling in UF can greatly hinder the effectiveness of the treatments. This study demonstrated a low-fouling composite cellulose membrane system based on microfibrillated cellulose (MFC) and silica nanoparticle additives. The incorporation of 'non-spherical' silica nanoparticles was found to exhibit better structural integration in the membrane (i.e., minimal aggregation of silica nanoparticles in the membrane scaffold) as compared to spherical silica. The resulting composite membranes were tested for UF using local wastewater, where the best-performing membrane exhibited higher permeation flux than commercial polyvinylidene difluoride (PVDF) and polyether sulfone (PES) membranes while maintaining a high separation efficiency (~99.6%) and good flux recovery ratio (>90%). The analysis of the fouling behavior using different models suggested that the processes of cake layer formation and pore-constriction were probably two dominant fouling mechanisms, likely due to the presence of humic substances in wastewater. The demonstrated cellulose composite membrane system showed low-fouling and high restoration capability by a simple hydraulic cleaning method due to the super hydrophilic nature of the cellulose scaffold containing silica nanoparticles.
Collapse
Affiliation(s)
- Ritika Joshi
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Nilay Sebat
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Kai Chi
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Madani Khan
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Ken I. Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Abdulrahman G. Alhamzani
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - M. A. Habib
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Tom Lindstrom
- KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Zhang C, Wu J, Qiu X, Zhang J, Chang H, He H, Zhao L, Liu X. Enteromorpha cellulose micro-nanofibrils/poly(vinyl alcohol) based composite films with excellent hydrophilic, mechanical properties and improved thermal stability. Int J Biol Macromol 2022; 217:229-242. [PMID: 35788004 DOI: 10.1016/j.ijbiomac.2022.06.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
This study presents the preparation of cellulose micro-nanofibrils (CMNFs) from Enteromorpha (EP) and the application in PVA/acetylated distarch phosphate (ADSP)/CMNFs composite films. The Micro-nano scale, hydrophilicity, and strong hydrogen bond characteristics of CMNFs prepared form EP by acid hydrolysis were confirmed through the granular statistics, XRD analysis and chemical structure analysis. With the addition of CMNFs, the ultimate tensile strength and elongation at break of composite films are increased by 42.4 % and 90.3 %. An original Weibull statistical analysis shows the impact of CMNFs' added amount on strength distribution and ultimate stress. SEM and polarizing microscope images show the CMNFs' dispersion state in that films is optimal, when their addition was to be 2 %-3 % of total dry weight of PVA/ADSP matrix, which is consistent with the results of Weibull modulus analysis. The main thermal weight-loss process of the composite film is divided into four stages, CMNFs can significantly increase the thermostability at 280 °C to 400 °C. The experiment of water contact angle and water vapor transmission rate of the composite films confirmed that CMNFs can improve films' hydrophilicity. This study provides basis for the preparation of hydrophilic CMNFs and mechanism of modification study PVA-based composites.
Collapse
Affiliation(s)
- Chuang Zhang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Jiahui Wu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xu Qiu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Jie Zhang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Huiqi Chang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Haifeng He
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Lifen Zhao
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xin Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
7
|
Wang Q, Liu S, Liu J, Sun J, Zhang Z, Zhu Q. Sustainable cellulose nanomaterials for environmental remediation - Achieving clean air, water, and energy: A review. Carbohydr Polym 2022; 285:119251. [DOI: 10.1016/j.carbpol.2022.119251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/09/2023]
|
8
|
Yang M, Lotfikatouli S, Chen Y, Li T, Ma H, Mao X, Hsiao BS. Nanostructured all-cellulose membranes for efficient ultrafiltration of wastewater. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120422] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Cherian RM, Tharayil A, Varghese RT, Antony T, Kargarzadeh H, Chirayil CJ, Thomas S. A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydr Polym 2022; 282:119123. [DOI: 10.1016/j.carbpol.2022.119123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
|
10
|
Das R, Lindström T, Sharma PR, Chi K, Hsiao BS. Nanocellulose for Sustainable Water Purification. Chem Rev 2022; 122:8936-9031. [PMID: 35330990 DOI: 10.1021/acs.chemrev.1c00683] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
Collapse
Affiliation(s)
- Rasel Das
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tom Lindström
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Priyanka R Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai Chi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
11
|
Jaffar SS, Saallah S, Misson M, Siddiquee S, Roslan J, Saalah S, Lenggoro W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes. MEMBRANES 2022; 12:287. [PMID: 35323762 PMCID: PMC8950644 DOI: 10.3390/membranes12030287] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022]
Abstract
Extensive research and development in the production of nanocellulose production, a green, bio-based, and renewable biomaterial has paved the way for the development of advanced functional materials for a multitude of applications. From a membrane technology perspective, the exceptional mechanical strength, high crystallinity, tunable surface chemistry, and anti-fouling behavior of nanocellulose, manifested from its structural and nanodimensional properties are particularly attractive. Thus, an opportunity has emerged to exploit these features to develop nanocellulose-based membranes for environmental applications. This review provides insights into the prospect of nanocellulose as a matrix or as an additive to enhance membrane performance in water filtration, environmental remediation, and the development of pollutant sensors and energy devices, focusing on the most recent progress from 2017 to 2022. A brief overview of the strategies to tailor the nanocellulose surface chemistry for the effective removal of specific pollutants and nanocellulose-based membrane fabrication approaches are also presented. The major challenges and future directions associated with the environmental applications of nanocellulose-based membranes are put into perspective, with primary emphasis on advanced multifunctional membranes.
Collapse
Affiliation(s)
- Syafiqah Syazwani Jaffar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Jumardi Roslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Sariah Saalah
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Wuled Lenggoro
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
12
|
Waheed H, Mehmood CT, Yang Y, Tan W, Fu S, Xiao Y. Dynamics of biofilms on different polymeric membranes – A comparative study using five physiologically and genetically distinct bacteria. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Lotfikatouli S, Hadi P, Yang M, Walker HW, Hsiao BS, Gobler C, Reichel M, Mao X. Enhanced anti-fouling performance in Membrane Bioreactors using a novel cellulose nanofiber-coated membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Huang Y, Yang P, Yang F, Chang C. Self-supported nanoporous lysozyme/nanocellulose membranes for multifunctional wastewater purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Zhang S, Acharya DP, Tang X, Zheng H, Yang G, Ng D, Xie Z. Dual Functions of a Au@AgNP-Incorporated Nanocomposite Desalination Membrane with an Enhanced Antifouling Property and Fouling Detection Via Surface-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46202-46212. [PMID: 34528779 PMCID: PMC8485324 DOI: 10.1021/acsami.1c15948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 06/01/2023]
Abstract
Membrane fouling has remained a major challenge limiting the wide application of membrane technology because it reduces the efficiency and shortens the lifespan of the membrane, thus increasing the operation cost. Herein we report a novel dual-function nanocomposite membrane incorporating silver-coated gold nanoparticles (Au@AgNPs) into a sulfosuccinic acid (SSA) cross-linked poly(vinyl alcohol) (PVA) membrane for a pervaporation desalination. Compared with the control PVA membrane and PVA/SSA membrane, the Au@AgNPs/PVA/SSA membrane demonstrated a higher water flux and better salt rejection as well as an enhanced antifouling property. More importantly, Au@AgNPs provided an additional function enabling a foulant detection on the membrane surface via surface-enhanced Raman spectroscopy (SERS) as Au@AgNPs could amplify the Raman signals as an SERS substrate. Distinct SERS spectra given by a fouled membrane helped to distinguish different protein foulants from their characteristic fingerprint peaks. Their fouling tendency on the membrane was also revealed by comparing the SERS intensities of mixed foulants on the membrane surface. The Au@AgNPs/PVA/SSA nanocomposite membrane presented here demonstrated the possibility of a multifunction membrane to achieve both antifouling and fouling detection, which could potentially be used in water treatment.
Collapse
Affiliation(s)
- Shixin Zhang
- Key
laboratory of the three Gorges Reservoir Region’s Eco-Environment,
State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Durga P. Acharya
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Xiaomin Tang
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
- Chongqing
Key Laboratory of Catalysis & New Environmental Materials, College
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P. R.
China
| | - Huaili Zheng
- Key
laboratory of the three Gorges Reservoir Region’s Eco-Environment,
State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Guang Yang
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Derrick Ng
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Zongli Xie
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| |
Collapse
|
16
|
Liu Y, Liu H, Shen Z. Nanocellulose Based Filtration Membrane in Industrial Waste Water Treatment: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5398. [PMID: 34576639 PMCID: PMC8464859 DOI: 10.3390/ma14185398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
In the field of industrial wastewater treatment, membrane separation technology, as an emerging separation technology, compared with traditional separation technology such as precipitation, adsorption, and ion exchange, has advantages in separation efficiency, low energy consumption, low cost, simple operation, and no secondary pollution. The application has been expanding in recent years, but membrane fouling and other problems have seriously restricted the development of membrane technology. Natural cellulose is one of the most abundant resources in nature. In addition, nanocellulose has characteristics of high strength and specific surface area, surface activity groups, as well as being pollution-free and renewable, giving it a very wide development prospect in many fields, including membrane separation technology. This paper reviews the current status of nanocellulose filtration membrane, combs the widespread types of nanocellulose and its derivatives, and summarizes the current application of cellulose in membrane separation. In addition, for the purpose of nanocellulose filtration membrane in wastewater treatment, nanocellulose membranes are divided into two categories according to the role in filtration membrane: the application of nanocellulose as membrane matrix material and as a modified additive in composite membrane in wastewater treatment. Finally, the advantages and disadvantages of inorganic ceramic filtrations and nanocellulose filtrations are compared, and the application trend of nanocellulose in the filtration membrane direction is summarized and discussed.
Collapse
Affiliation(s)
- Yunxia Liu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
| | - Honghai Liu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongrong Shen
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China;
| |
Collapse
|
17
|
Effective and efficient fabrication of high-flux tight ZrO2 ultrafiltration membranes using a nanocrystalline precursor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Song F, Zhang L, Chen R, Liu Q, Liu J, Yu J, Liu P, Duan J, Wang J. Bioinspired Durable Antibacterial and Antifouling Coatings Based on Borneol Fluorinated Polymers: Demonstrating Direct Evidence of Antiadhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33417-33426. [PMID: 34250807 DOI: 10.1021/acsami.1c06030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Substituting natural products for traditional poison-killing antifouling agents is an efficient and promising method to alleviate the increasingly serious ecological crisis and aggravate the loss due to marine biofouling. Herein, the successful synthesis of poly(methyl methacrylate-co-ethyl acrylate-co-hexafluorobutyl methacrylate-co-isobornyl methacrylate) copolymer (PBAF) with borneol monomers and fluorine by a free radical polymerization method is reported. The PBA0.09F coating exhibits outstanding antibacterial and antifouling activity, achieving 98.2% and 92.3% resistance to Escherichia coli and Staphylococcus aureus, respectively, and the number of Halamphora sp. adhesion is only 26 (0.1645 mm2) in 24 h. This remarkable antibacterial and antifouling performance is attributed to the incorporation of fluorine components into the copolymer, which induces a low surface energy and hydrophobicity and the complex molecular structure of the natural nontoxic antifouling agent borneol. In addition, the results showed that the contents of the adhesion-related proteins mfp-3, mfp-5, and mfp-6 were significantly reduced, which proved that natural substances affect the secretion of biological proteins. Importantly, the PBAF coating exhibits excellent environmental friendliness and long-term stability. The antifouling mechanism is clarified, and an effective guide for an environmentally friendly antifouling coating design is proposed.
Collapse
Affiliation(s)
- Fan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Linlin Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - PeiLi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jizhou Duan
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
19
|
Yang M, Hadi P, Yin X, Yu J, Huang X, Ma H, Walker H, Hsiao BS. Antifouling nanocellulose membranes: How subtle adjustment of surface charge lead to self-cleaning property. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118739] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Liang Y, Ma H, Taha AA, Hsiao BS. High-flux anti-fouling nanofibrous composite ultrafiltration membranes containing negatively charged water channels. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Andreas Mautner
- Polymer and Composite Engineering (PaCE) GroupInstitute of Materials Chemistry and Research, University of Vienna Vienna Austria
| |
Collapse
|
23
|
Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers (Basel) 2019; 11:E1252. [PMID: 31362430 PMCID: PMC6723865 DOI: 10.3390/polym11081252] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 11/16/2022] Open
Abstract
Sustainable and affordable supply of clean, safe, and adequate water is one of the most challenging issues facing the world. Membrane separation technology is one of the most cost-effective and widely applied technologies for water purification. Polymeric membranes such as cellulose-based (CA) membranes and thin-film composite (TFC) membranes have dominated the industry since 1980. Although further development of polymeric membranes for better performance is laborious, the research findings and sustained progress in inorganic membrane development have grown fast and solve some remaining problems. In addition to conventional ceramic metal oxide membranes, membranes prepared by graphene oxide (GO), carbon nanotubes (CNTs), and mixed matrix materials (MMMs) have attracted enormous attention due to their desirable properties such as tunable pore structure, excellent chemical, mechanical, and thermal tolerance, good salt rejection and/or high water permeability. This review provides insight into synthesis approaches and structural properties of recent reverse osmosis (RO) and nanofiltration (NF) membranes which are used to retain dissolved species such as heavy metals, electrolytes, and inorganic salts in various aqueous solutions. A specific focus has been placed on introducing and comparing water purification performance of different classes of polymeric and ceramic membranes in related water treatment industries. Furthermore, the development challenges and research opportunities of organic and inorganic membranes are discussed and the further perspectives are analyzed.
Collapse
Affiliation(s)
- Zi Yang
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA.
| | - Yi Zhou
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA
| | - Zhiyuan Feng
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA
| | - Xiaobo Rui
- State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
| | - Tong Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|