1
|
Zhai Z, Zhu J, Cao S, Zhang Y, Van der Bruggen B. Supramolecular Engineering of Metal-Organic Membranes with Metal-Support Interactions for Nanoconfined Synergistic Catalysis. SMALL METHODS 2025:e2500409. [PMID: 40255079 DOI: 10.1002/smtd.202500409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Continuous-flow nanoconfined catalysis is crucial for rapid and efficient water purification but is challenging for traditional reactors. Supramolecular metal-organic membranes, with their intrinsically rich metal nodes, present promising opportunities for heterogeneous nano-catalysis. However, achieving a uniform distribution and stabilization of exposed metal active sites remains a challenge. Here, a phosphotungstic acid (H3PW12O40: PW12) modulated interfacial coordination strategy is introduced to engineer a thin palladium-1,3,5-triformylphloroglucinol (Pd-Tp) nanofilm. The strong electrostatic-dominated interaction between the fourfold hollow site of PW12 and PdII enables in situ confined reduction, facilitating the enhanced loading and uniform distribution of cluster-shaped Pd-PW12 nanoparticles within the thin layer. The coordination between hydrophilic PW12 and Tp leads to competition with PdCl4 2- during film formation, giving rise to thinner, more hydrophilic, and loose-structured membranes. Importantly, the PCM/NaBH4 system exhibits a superior reducibility and electron transfer capacity, enabling efficient degradation of a range of organic contaminants, attributed to the robust metal-support interactions. The PCM achieves a degradation rate constant of the target pollutant 4-nitrophenol (97.8 ms-1), which is 175 times faster than that of the control HCM (0.56 ms-1). This study highlights the role of phosphotungstic acid in the microstructure modulation of metal-organic membrane and enhanced metal-support interaction for nanoconfined synergistic catalysis.
Collapse
Affiliation(s)
- Zihao Zhai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shaochong Cao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
2
|
Xu Y, Huang Y, Xie Y, Chen X. Efficient and Rapid Extraction of Gold from E-Waste via Tailoring the Skeleton Environment of Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12317-12327. [PMID: 39957576 DOI: 10.1021/acsami.4c22268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The recovery and repurposing of noble metal from electronic waste has attracted significant attention due to the tremendous benefits to the economy and environment but is of great challenge. Herein, a two-dimensional oxygen-rich COF material, named TbDa-COF, was fabricated via integrating 1,3,5-tris(4-formylphenyl)benzene (TFPB) and oxygen-rich 3,3'-dihydroxybenzidine (DHB) into a π-conjugated framework. TbDa-COF permits selective gold recovery through local coordination and electrostatic interaction, which is then followed via in situ reduction to form gold nanoparticles (AuNPs) within its skeleton. The experiment results exhibited satisfactory selectivity and favorable capture capacity (247.1 mg g-1), which is attributed to the favored crystallinity, numerous active functional moieties in DHB, and the efficient reduction of gold via hydroxyl groups. Meanwhile, the characterization results demonstrated that gold nanoparticles were evenly enriched and localized on the skeleton of TbDa-COF, which exhibits excellent catalytic activity in the reduction of 4-nitrophenol (90.9%) and rhodamine B (99.3%) with NaBH4. More importantly, the strong anchoring ability between AuNPs and oxygen-rich units over the skeleton enhances the binding of AuNPs with TbDa-COF to maintain the preferred stability and easily reuse without loss of the catalytic property. The design of novel COF materials with specific functional units will open a new frontier on the recovery and reuse of noble metals; but also the composite has various potential developments in the fields of catalysis and optoelectronics.
Collapse
Affiliation(s)
- Yulong Xu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yong Huang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yuxin Xie
- Department of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
3
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
4
|
Zhou S, Luo X, Zhang Y, Zhang Y, Wang D, Liu G, Gu P, Li Z. Quaternization of a Triphenylamine-Based Conjugated Porous Organic Polymer to Immobilize PtCl 62- for the Photocatalytic Reduction of 4-Nitrophenol. Inorg Chem 2024; 63:15024-15033. [PMID: 39083718 DOI: 10.1021/acs.inorgchem.4c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photocatalytic reduction of 4-nitrophenol (4-NP) for converting it to nontoxic 4-aminophenol (4-AP) is one of the most efficient approaches for removing toxic 4-NP. Using porous organic polymers (POPs) as the support to immobilize noble metal catalysts has exhibited remarkable reduction performance but is rarely reported. Herein, a cationic triphenylamine-based POP was synthesized by quaternization to immobilize PtCl62- to prepare an efficient photocatalyst named DCM-TPA-Pt for the reduction of 4-NP to 4-AP in the presence of NaBH4. Different from reported methods which realize immobilization by doping or complexing, the support and PtCl62- are combined through electrostatic interaction with milder reaction conditions to produce a photocatalyst in this work. DCM-TPA-Pt shows excellent photocatalytic reduction performance, reaching 99.9% conversion within 3 min, and its pseudo-first-order constant is 0.0305 s-1, surpassing most of the reported photocatalysts. Moreover, DCM-TPA-Pt also exhibits equal reduction efficiency after five continuous cycles, which highlights its potential utilization in practical applications.
Collapse
Affiliation(s)
- Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Khatoon N, Ali N, Ali S, Chen Z, Jun W, Yang H. Preparation of a CPVC composite loose nanofiltration membrane based on plant polyphenols for effective dye wastewater treatment. RSC Adv 2024; 14:23352-23363. [PMID: 39049886 PMCID: PMC11267257 DOI: 10.1039/d4ra03570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The textile industry's high-salinity wastewater presents a significant difficulty for fractioning salts and dyes. To fractionate the dyes and salts, a high-performance CPVC composite loose nanofiltration membrane (LNM) was fabricated by interfacial polymerization. The organic phase was obtained by crosslinking polyethylenimine (PEI) with tannic acid (TA) and gallic acid (GA) using TMC. The resultant composite LNM performance was enhanced by adjusting the coating parameters, which included TA and GA concentrations as well as coating time. The study examined the effects of the total content of TA/PEI and GA/PEI concentrations on the chemical structure, surface roughness, and microstructure of the selective layer of LNM using SEM, AFM, FTIR, and water contact angle measurements. It also investigated the filtration performance of the membrane's selective layer, including pure water flux, PEG800 rejection rate, and membrane fouling analysis. However, the resultant membrane treated simulated reactive black 5 (RB5) dye wastewater. When the total content of TA/PEI is 4 kg L-1, the permeability of pure water flux is high at 7.5 L per m2 per h per bar when the total content of GA/PEI is 14 kg L-1 and the pure water flux is high at 8.8 L per m2 per h per bar. The overall PEG800 rejection rates were 97-98.98%. The optimal TA : PEI ratios reached a good pure water permeability up to 6.4 L per (m2 per h per bar) with a high rejection rate of 99.69% for a ratio 1/3 to dye, and GA : PEI ratios reached a good water permeability at 5.5 and 6.5 L per (m2 per h per bar) with rejection rates of 99.21% and 98.88% for ratio 1/3 and 3.5/10.5 for simulated RB5 dye, and the NaCl retention rate gradually decreased from 4% to 3%. The resultant LNM demonstrated promising applications in dye and salt fractionation.
Collapse
Affiliation(s)
- Noor Khatoon
- College of Environmental Science and Engineering, Donghua University Shanghai 201620 China
| | - Nadir Ali
- Department of Textile Engineering, Mehran University of Engineering & Technology Jamshoro 76060 Pakistan
| | - Sagar Ali
- Department of Environmental Engineering, Mehran University of Engineering & Technology Jamshoro 76060 Pakistan
| | - Zhang Chen
- College of Environmental Science and Engineering, Donghua University Shanghai 201620 China
| | - Wang Jun
- College of Environmental Science and Engineering, Donghua University Shanghai 201620 China
| | - Honghai Yang
- Department of Civil Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
6
|
Hesaraki SAH, Prymak O, Heidelmann M, Ulbricht M, Fischer L. Integrated In Situ Fabrication of CuO Nanorod-Decorated Polymer Membranes for the Catalytic Flow-Through Reduction of p-Nitrophenol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17517-17530. [PMID: 38536956 DOI: 10.1021/acsami.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We developed a novel method to fabricate copper nanorods in situ in a poly(ether sulfone) (15 wt %) casting solution by a sonochemical reduction of Cu2+ ions with NaBH4. The main twist is the addition of ethanol to remove excess NaBH4 through Cu(0) catalyzed ethanolysis. This enabled the direct use of the resulting copper-containing casting dispersions for membrane preparation by liquid nonsolvent-induced phase separation and led to full utilization of the copper source, generating zero metal waste. We characterized the copper nanorods as presented in the membranes via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV/vis spectroscopy. We could demonstrate that the rapid immobilization from reducing conditions led to the membrane incorporation of copper nanorods in a state of high reactivity, which also promoted the complete oxidation to CuO after fabrication. We further observed a large aspect ratio and crystal straining of the nanorods, likely resulting from growth around the matrix polymer. The entanglement with poly(ether sulfone) further facilitated a selective presentation at the pore surface of the final CuO-decorated membranes. The membranes also exhibit high water permeances of up to 2800 L/m2hbar. Our catalytic membranes achieved exceptionally high activities in the aqueous flow-through reduction of p-nitrophenol (p-NP), with turnover frequencies of up to 115 h-1, even surpassing those of other state-of-the-art catalytic membranes that incorporate Pd or Ag. Additionally, we demonstrated that catalytic hydrolysis of the reducing agent in water can lead to hydrogen gas formation and blocking of active sites during continuous catalytic p-NP hydrogenation. We illustrated that the accompanying conversion loss can be mitigated by facilitated gas transport in the water-filled pores, which is dependent on the orientation of the pore size gradient and the flow direction.
Collapse
Affiliation(s)
- S Amir H Hesaraki
- Lehrstuhl für Technische Chemie II, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany
| | - Markus Heidelmann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University Duisburg-Essen, Carl-Benz-Straße 199, 47057 Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany
| | - Lukas Fischer
- Lehrstuhl für Technische Chemie II, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany
| |
Collapse
|
7
|
Chen C, Lu L, Fei L, Xu J, Wang B, Li B, Shen L, Lin H. Membrane-catalysis integrated system for contaminants degradation and membrane fouling mitigation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166220. [PMID: 37591402 DOI: 10.1016/j.scitotenv.2023.166220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
The integration of catalytic degradation and membrane separation processes not only enables continuous degradation of contaminants but also effectively alleviates inevitable membrane fouling, demonstrating fascinating practical value for efficient water purification. Such membrane-catalysis integrated system (MCIS) has attracted tremendous research interest from scientists in chemical engineering and environmental science recently. In this review, the advantages of MCIS are discussed, including the membrane structure regulation, stable catalyst loading, nano-confinement effect, and efficient natural organic matter (NOM) exclusion, highlighting the synergistic effect between membrane separation and catalytic process. Subsequently, the design considerations for the fabrication of catalytic membranes, including substrate membrane, catalytic material, and fabrication method, are comprehensively summarized. Afterward, the mechanisms and performance of MCIS based on different catalytic types, including liquid-phase oxidants/reductants involved MCIS, gas involved MCIS, photocatalysis involved MCIS, and electrocatalysis involved MCIS are reviewed in detail. Finally, the research direction and future perspectives of catalytic membranes for water purification are proposed. The current review provides an in-depth understanding of the design of catalytic membranes and facilitates their further development for practical applications in efficient water purification.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| |
Collapse
|
8
|
Sun Z, Yin Z, Zhang M, Guo D, Ran F. Poloxamer 407 Combined with Polyvinylpyrrolidone To Prepare a High-Performance Poly(ether sulfone) Ultrafiltration Membrane. ACS OMEGA 2023; 8:39783-39795. [PMID: 37901513 PMCID: PMC10600910 DOI: 10.1021/acsomega.3c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Abstract
At present, the design and fabrication of polymer membranes with high permeability and good retention ability are still huge challenges. In this study, the commercial Poloxamer 407 (Pluronic F127) is selected as a multifunctional additive, and polyvinylpyrrolidone is used as a pore-forming agent to modify the poly(ether sulfone) membrane by liquid-liquid phase conversion technology to prepare an ultrafiltration membrane with excellent performance. The hydrophobic poly(propylene oxide) segment in Poloxamer 407 guarantees that this copolymer can be firmly anchored to the poly(ether sulfone) matrix, and the hydrophilic poly(ethylene oxide) segments in Poloxamer 407 impart a stronger hydrophilic nature to the modified membrane surface. Therefore, the permeability and hydrophilicity of the modified membrane are significantly improved and the modified membrane also has good stability. When the amount of Poloxamer 407 added to the casting solution reached 0.6 g, the water flux of the modified membrane was as high as 368 L m-2 h-1, and the rejection rate of bovine serum albumin was close to 98%. In the test to isolate organic small molecule dyes, the retention rate of the modified membrane to Congo red is 94.27%. In addition, the modified membrane shows an excellent water flux recovery rate and antifouling ability. It performs well in subsequent cycle tests and long-term membrane life tests and can be used repeatedly. Our work has resulted in poly(ether sulfone) membranes with good performance, which show great potential in the treatment of biomedical wastewater and the removal of industrial organic dye wastewater, it provides ideas for the development and application of amphiphilic polymer materials.
Collapse
Affiliation(s)
- Zhijiang Sun
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Zehua Yin
- Jiangsu
Solicitude Medical Technology co., Ltd., Suzhou 215100, PR China
| | - Mingyu Zhang
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Dongli Guo
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
- Jiangsu
Solicitude Medical Technology co., Ltd., Suzhou 215100, PR China
| | - Fen Ran
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
9
|
Mills R, Tvrdik C, Lin A, Bhattacharyya D. Enhanced Degradation of Methyl Orange and Trichloroethylene with PNIPAm-PMMA-Fe/Pd-Functionalized Hollow Fiber Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2041. [PMID: 37513052 PMCID: PMC10386459 DOI: 10.3390/nano13142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Trichloroethylene (TCE) is a prominent groundwater pollutant due to its stability, widespread contamination, and negative health effects upon human exposure; thus, an immense need exists for enhanced environmental remediation techniques. Temperature-responsive domains and catalyst incorporation in membrane domains bring significant advantages for toxic organic decontamination. In this study, hollow fiber membranes (HFMs) were functionalized with stimuli-responsive poly-N-isopropylacrylamide (PNIPAm), poly-methyl methacrylate (PMMA), and catalytic zero-valent iron/palladium (Fe/Pd) for heightened reductive degradation of such pollutants, utilizing methyl orange (MO) as a model compound. By utilizing PNIPAm's transition from hydrophilic to hydrophobic expression above the LCST of 32 °C, increased pollutant diffusion and adsorption to the catalyst active sites were achieved. PNIPAm-PMMA hydrogels exhibited 11.5× and 10.8× higher equilibrium adsorption values for MO and TCE, respectively, when transitioning from 23 °C to 40 °C. With dip-coated PNIPAm-PMMA-functionalized HFMs (weight gain: ~15%) containing Fe/Pd nanoparticles (dp~34.8 nm), surface area-normalized rate constants for batch degradation were determined, resulting in a 30% and 420% increase in degradation efficiency above 32 °C for MO and TCE, respectively, due to enhanced sorption on the hydrophobic PNIPAm domain. Overall, with functionalized membranes containing superior surface area-to-volume ratios and enhanced sorption sites, efficient treatment of high-volume contaminated water can be achieved.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Cameron Tvrdik
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew Lin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
10
|
Rapid membrane surface functionalization with Ag nanoparticles via coupling electrospray and polymeric solvent bonding for enhanced antifouling and catalytic performance: Deposition and interfacial reaction mechanisms. J Colloid Interface Sci 2023; 639:203-213. [PMID: 36805745 DOI: 10.1016/j.jcis.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Electrospray is an effective, fast, and potentially scalable approach for membrane surface functionalization using various engineered nanomaterials (ENMs). However, the lack of fundamental understandings of the deposition process hinders the controlled deposition, efficient utilization, and long-term stabilization of the ENMs, and thus the practical applications of the nanocomposite membranes. To bridge this critical knowledge gap, advanced online characterization techniques (laser diffraction size measurement and laser doppler velocimetry) coupled with mathematical aerosol modeling are utilized to understand the three key process parameters: droplet size, deposition velocity, and evaporation rate. After deposition, polymeric solvent bonding (i.e., interdiffusion and subsequent entanglement of polymers) was found to substantially stabilize the deposited Ag NPs. We further provide a comprehensive description of such interfacial reaction mechanisms. Our results show a consistency between theoretical predication and measurement of the droplet size or deposition velocity, whereas realistic droplet evaporation rate is lower than the theoretical value due to the addition of the polymer. Successful stabilization of Ag NPs via interfacial polymeric bonding occurs under the conditions of large material contact area, high material compatibility, proper temperature (e.g., 22 °C), and polymer-to-solvent ratio (e.g., 3-5%). Our coupled approach achieves superior Ag NP coverage with high stability within minutes. Despite some reduction in water permeance, the resultant membrane shows markedly improved catalytic and antimicrobial (antibiofouling) performance (>90% enhancement) and maintained rejection. Taken together, our findings provide fundamental insights into the coupled process of electrospray deposition and polymeric solvent bonding to enable additive manufacturing of novel nanocomposite membranes with diverse structures and multiple functions.
Collapse
|
11
|
Han F, Wang W, Li D, Xu S, Sun Y, Lin L, Ma L, Li J, Li L. Green preparation of silver nanocluster composite AgNCs@CF- g-PAA and its application: 4-NP catalytic reduction and hydrogen production. RSC Adv 2023; 13:11807-11816. [PMID: 37077991 PMCID: PMC10106973 DOI: 10.1039/d3ra01245j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
4-Nitrophenol (4-NP) is a serious organic environmental pollutant. Conversion of 4-nitrophenol to 4-aminophenol (4-AP) by catalytic hydrogenation is an effective solution. In this work, a catalyst (AgNCs@CF-g-PAA) loaded with silver nanoclusters (AgNCs) was prepared by radiation technique. Firstly, the template polyacrylic acid (PAA) was grafted onto the cotton fiber (CF) by radiation grafting technique to obtain a solid template (CF-g-PAA). After that, AgNCs were synthesized in situ on CF-g-PAA by radiation reduction, and the composite material AgNCs@CF-g-PAA was obtained directly. AgNCs@CF-g-PAA has an obvious photoluminescence phenomenon, which is attributed to the stable AgNCs binding to the carboxyl on the PAA molecular chain. Due to the extremely small size of AgNCs, AgNCs@CF-g-PAA has good catalytic characteristics. The prepared AgNCs@CF-g-PAA catalyst has a very high catalytic rate for the hydrogenation of 4-NP. Even at high concentrations of 4-NP, AgNCs@CF-g-PAA can still maintain a high catalytic rate. At the same time, the AgNCs@CF-g-PAA catalyst can also be used to catalyze the rapid hydrolysis of sodium borohydride, which is conducive to hydrogen production. In summary, we have prepared a practical catalyst AgNCs@CF-g-PAA with high catalytic performance based on cheap raw materials and a simple synthesis route, which provides a catalyst candidate for the treatment of water contaminant 4-NP and the production of hydrogen from sodium borohydride.
Collapse
Affiliation(s)
- Fei Han
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenrui Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Danyi Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Siyi Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lin Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jihao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Wuwei Institute of New Energy Gansu 733000 China
| | - Linfan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Wuwei Institute of New Energy Gansu 733000 China
| |
Collapse
|
12
|
Wang WL, Kanno A, Ishiguri A, Jin RH. Generation of sub-5 nm AuNPs in the special space of the loop-cluster corona of a polymer vesicle: preparation and its unique catalytic performance in the reduction of 4-nitrophenol. NANOSCALE ADVANCES 2023; 5:2199-2209. [PMID: 37056615 PMCID: PMC10089077 DOI: 10.1039/d2na00893a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
The hybrid vesicle AuNP@LCCV, in which a large number of AuNPs with an average size of about 2.8 nm were densely and uniformly distributed in an isolated state throughout the corona of the unusual polymer vesicle, was prepared via in situ reduction of Au3+ ions, which were encapsulated in advance in the unique polymer vesicle (LCCV) consisting of a hydrophobic membrane of poly(2-phenyl-2-oxazoline) and a hydrophilic loop-cluster corona of polyethyleneimine. The vesicle was formed via self-assembly from a comb-like block copolymer in which a polystyrenic main chain was grafted densely with diblock polyethyleneimine-b-poly(2-phenyl-2-oxazoline) and acted as a reactor for the reduction of Au3+. The hybrid vesicle AuNP@LCCV showed powerful catalytic ability in the reduction of nitrophenols (NPs). Interestingly, the reduction reactions of NPs showed a remarkably long induction time, which could be shortened dramatically from 60 min to 1-2 min by greatly increasing the concentration of NaBH4. It is revealed that the oxygen adsorbed on the AuNPs significantly inhibited the reduction, causing the induction time. Once the oxygen is chemically cleaned from the surface of the AuNPs, the reduction of 4-NP proceeds gradually for a while and then completes suddenly. The reduction mechanism accompanying the oxygen-dependent induction time is proposed from the view of the strong oxygen affinity of the catalyst AuNP@LCCV.
Collapse
Affiliation(s)
- Wen-Li Wang
- Department of Material and Life Chemistry, Kanagawa University 3-27-1 Rokkakubashi Yokohama 221-8686 Japan
| | - Ayaka Kanno
- Department of Material and Life Chemistry, Kanagawa University 3-27-1 Rokkakubashi Yokohama 221-8686 Japan
| | - Amika Ishiguri
- Department of Material and Life Chemistry, Kanagawa University 3-27-1 Rokkakubashi Yokohama 221-8686 Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University 3-27-1 Rokkakubashi Yokohama 221-8686 Japan
| |
Collapse
|
13
|
Nechifor AC, Goran A, Tanczos SK, Păncescu FM, Oprea OC, Grosu AR, Matei C, Grosu VA, Vasile BȘ, Albu PC. Obtaining and Characterizing the Osmium Nanoparticles/ n-Decanol Bulk Membrane Used for the p-Nitrophenol Reduction and Separation System. MEMBRANES 2022; 12:1024. [PMID: 36295782 PMCID: PMC9609118 DOI: 10.3390/membranes12101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Liquid membranes based on nanoparticles follow a continuous development, both from obtaining methods and characterization of techniques points of view. Lately, osmium nanoparticles have been deposited either on flat membranes, with the aim of initiating some reaction processes, or on hollow fiber membranes, with the aim of increasing the contact surface with the phases of the membrane system. This paper presents the obtainment and characterization of a liquid membrane based on osmium nanoparticles (Os-NP) dispersed in ndecanol (nDol) for the realization of a membrane system with a large contact surface between the phases, but without using a liquid membrane support. The dispersion of osmium nanoparticles in n-decanol is carried out by the method of reducing osmium tetroxide with 1-undecenoic acid (UDA). The resulting membrane was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy analysis (EDAX), thermoanalysis (TG, DSC), Fourier transform infra-red (FTIR) spectroscopy and dynamic light scattering (DLS). In order to increase the mass transfer surface, a design for the membrane system was realized with the dispersion of the membrane through the receiving phase and the dispersion of the source phase through the membrane (DBLM-dispersion bulk liquid membrane). The process performance was tested for the reduction of p-nitrophenol (pNP) from the source phase, using sodium tetra-borohydride (NaBH4), to p-aminophenol (pAP), which was transported and collected in the receiving phase. The obtained results show that membranes based on the dispersion of osmium nanoparticles in n-decanol can be used with an efficiency of over 90% for the reduction of p-nitrophenol and the separation of p-aminophenol.
Collapse
Affiliation(s)
- Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Goran
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
| | - Florentina Mihaela Păncescu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania
| |
Collapse
|
14
|
Rational design of high-performance continuous flow catalytic membrane reactor based on poly(4-vinylpyridine) brush-anchored Au nanoparticles. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Yu Y, Zhou Z, Huang G, Cheng H, Han L, Zhao S, Chen Y, Meng F. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. WATER RESEARCH 2022; 222:118901. [PMID: 35933814 DOI: 10.1016/j.watres.2022.118901] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In the face of the growing global water crisis, membrane technology is a promising means of purifying water and wastewater. Silver nanoparticles (AgNPs) have been widely used to improve membrane performance, for antibiofouling, and to aid in photocatalytic degradation, thermal response, and electro-conductivity. However, several critical issues such as short antimicrobial periods, trade-off effects and silver inactivation seriously restrict the engineering application of AgNPs-incorporated membranes. In addition, there is controversy around the use of AgNPs given the toxic preparation process and environmental/biological risks. Hence, it is of great significance to summarize and analyze the recent developments and critical challenges in the use of AgNPs-incorporated membranes in water and wastewater treatment, and to propose potential solutions. We reviewed the different properties and functions of AgNPs and their corresponding applications in AgNPs-incorporated membranes. Recently, multifunctional, novel AgNP-incorporated membranes combined with other functional materials have been developed with high-performance. We further clarified the synergistic mechanisms between AgNPs and these novel nanomaterials and/or polymers, and elucidated their functions and roles in membrane separation. Finally, the critical challenges of AgNPs-incorporated membranes and the proposed solutions were outlined: i) Prolonging the antimicrobial cycle through long-term and controlled AgNPs release; ii) Overcoming the trade-off effect and organic fouling of the AgNPs-incorporated membranes; iii) Preparation of sustainable AgNPs-incorporated membranes; iv) Addressing biotoxicity induced by AgNPs; and v) Deactivation of AgNPs-incorporated membrane. Overall, this review provides a comprehensive discussion of the advancements and challenges of AgNPs-incorporated membranes and guides the development of more robust, multi-functional and sustainable AgNPs-incorporated membranes.
Collapse
Affiliation(s)
- Yuanyuan Yu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China.
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, China
| | - Hong Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Le Han
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Liu J, Shen L, Lin H, Huang Z, Hong H, Chen C. Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability. J Colloid Interface Sci 2022; 618:483-495. [PMID: 35366476 DOI: 10.1016/j.jcis.2022.03.106] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been considered as promising nanofillers to fabricate mixed matrix membranes for water treatment. However, manipulating distribution of MOFs nanoparticles in the membrane matrix remains a great challenge. In this study, UiO-66 was firstly coated by magnetic Ni via an in-situ reduction reaction, and then incorporated into polyethersulfone (PES) membrane matrix to prepare PES-Ni@UiO-66 membrane. The magnetic Ni allowed to manipulate the distribution of magnetic Ni@UiO-66 in the phase-inversion process by an external magnetic field. The hydrophilic Ni@UiO-66 can be pulled onto membrane surface by the magnetic force, endowing the prepared membrane with rather higher hydrophilicity. The prepared membrane exhibited superior water permeability with a pure water flux of 611.5 ± 19.8 L·m-2·h-1 and improved antifouling performance. Moreover, benifiting from photocatalytic activity of the exposed Ni@UiO-66 on membrane surface, the obtained PES-Ni@UiO-66 membrane demonstrated excellent photocatalytic self-cleaning ability with a flux recovery rate (FRR) higher than 95% under UV irradiation. Analyzing by extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory indicated that the improved antifouling performance could be attributed to less attractive or even repulsive interaction between the prepared membrane and pollutants. This work provided valuable guidance for structural regulation and development of high-performance MOFs-based membranes for water treatment.
Collapse
Affiliation(s)
- Jiahao Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Zhengyi Huang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
17
|
Yin Y, Shi L, Zhang S, Duan X, Zhang J, Sun H, Wang S. Two−dimensional nanomaterials confined single atoms: New opportunities for environmental remediation. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhang C, Gao Y, Yin J, Zhang Y, Meng J. Metalized hierarchical porous poly-melamine-formaldehyde membrane for continuous-flow reduction of 4-nitrophenol. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Bao X, Wang F, Liu Q, Yu F, Yang Y. Controlled aggregation of phytic acid metal complex on polysulfone ultrafiltration membrane toward simultaneous rejection of highly emulsified oils and dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
One-step selective separation and catalytic transformation of an organic pollutant from pollutant mixture via a thermo-responsive semi-IPN/PVDF@Pd bilayer composite membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Catalytic nanofiber composite membrane by combining electrospinning precursor seeding and flowing synthesis for immobilizing ZIF-8 derived Ag nanoparticles. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Wang Y, Fan S, Xiao Z, Mai Z, Bai K, Chen J, Chen Y, Liu J. Catalytic membrane nano reactor with Cu/ZnO in situ immobilized in membrane pores for methanol dehydrogenation to formaldehyde. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wang Q, Peng Y, Ji X, Hadi MK, Zhang S, Tang J, Ran F. Conductive 3D networks in a 2D layer for high performance ultrafiltration membrane with high flux-retention and robust cyclic stability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Transport and Separation of the Silver Ion with n-decanol Liquid Membranes Based on 10-undecylenic Acid, 10-undecen-1-ol and Magnetic Nanoparticles. MEMBRANES 2021; 11:membranes11120936. [PMID: 34940437 PMCID: PMC8707525 DOI: 10.3390/membranes11120936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
This paper presents a transport and recovery of silver ions through bulk liquid membranes based on n-decanol using as carriers 10-undecylenic acid and 10-undecylenyl alcohol. The transport of silver ions across membranes has been studied in the presence of two types of magnetic oxide nanoparticles obtained by the electrochemical method with iron electrodes in the electrolyte with and without silver ions, which act as promoters of turbulence in the membrane. Separation of silver ions by bulk liquid membranes using 10-undecylenic acid and 10-undecylenyl alcohol as carriers were performed by comparison with lead ions. The configuration of the separation module has been specially designed for the chosen separation process. Convective-generating magnetic nanoparticles were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermal gravimetric analysis (TGA), differential scanning calorimetry and magnetization. The process performance (flux and selectivity) was tested were tested for silver ion transport and separation through n-decanol liquid membranes with selected carriers. Under the conditions of the optimized experimental results (pH = 7 of the source phase, pH = 1 of the receiving phase, flow rate of 30 mL/min for the source phase and 9 mL/min for the receiving phase, 150 rot/min agitation of magnetic nanoparticles) separation efficiencies of silver ions of over 90% were obtained for the transport of undecenoic acid and about 80% for undecylenyl alcohol.
Collapse
|
25
|
Alosaimi EH, Hotan Alsohaimi I, M. A. Hassan H, Chen Q, Melhi S, Abdelaziz Younes A. Towards superior permeability and antifouling performance of sulfonated polyethersulfone ultrafiltration membranes modified with sulfopropyl methacrylate functionalized SBA-15. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Wang C, Song X, Liu Y, Zhang C. PVC-g-PVP amphiphilic polymer synthesis by ATRP and its membrane separation performance for silicone-containing wastewater. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Liu X, Ruan W, Wang W, Zhang X, Liu Y, Liu J. The Perspective and Challenge of Nanomaterials in Oil and Gas Wastewater Treatment. Molecules 2021; 26:molecules26133945. [PMID: 34203335 PMCID: PMC8272219 DOI: 10.3390/molecules26133945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Oil and gas wastewater refers to the waste stream produced in special production activities such as drilling and fracturing. This kind of wastewater has the following characteristics: high salinity, high chromaticity, toxic and harmful substances, poor biodegradability, and a difficulty to treat. Interestingly, nanomaterials show great potential in water treatment technology because of their small size, large surface area, and high surface energy. When nanotechnology is combined with membrane treatment materials, nanofiber membranes with a controllable pore size and high porosity can be prepared, which provides more possibilities for oil–water separation. In this review, the important applications of nanomaterials in wastewater treatment, including membrane separation technology and photocatalysis technology, are summarized. Membrane separation technology is mainly manifested in ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). It also focuses on the application of semiconductor photocatalysis technology induced by TiO2 in the degradation of oil and gas wastewater. Finally, the development trends of nanomaterials in oil and gas wastewater treatment are prospected.
Collapse
Affiliation(s)
- Xiaoying Liu
- Collage of Environment and Resources, Chongqing Technology and Business University, Chongqing 400047, China; (X.L.); (W.R.)
| | - Wenlin Ruan
- Collage of Environment and Resources, Chongqing Technology and Business University, Chongqing 400047, China; (X.L.); (W.R.)
| | - Wei Wang
- Key Laboratory of Complex Oil and Gas Field Exploration and Development of Chongqing Municipality, Chongqing University of Science & Technology, Chongqing 401331, China;
| | - Xianming Zhang
- Collage of Environment and Resources, Chongqing Technology and Business University, Chongqing 400047, China; (X.L.); (W.R.)
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
- Correspondence: (X.Z.); (J.L.)
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China;
| | - Jingcheng Liu
- Key Laboratory of Complex Oil and Gas Field Exploration and Development of Chongqing Municipality, Chongqing University of Science & Technology, Chongqing 401331, China;
- Correspondence: (X.Z.); (J.L.)
| |
Collapse
|
28
|
Wang Y, Shen H, Cui C, Hou L, Chen W, Liu Q, Xu J, Wang Z, Hu J. Towards to better permeability and antifouling sulfonated poly (aryl ether ketone sulfone) with carboxyl group ultrafiltration membrane blending with amine functionalization of SBA-15. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Zeng J, Qi P, Wang Y, Liu Y, Sui K. Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124633. [PMID: 33243653 DOI: 10.1016/j.jhazmat.2020.124633] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
There is a growing demand for heavy metal removal by membrane technology in real applications. However, few studies were reported concerning antimony (Sb) removal by membrane technology. Herein, a novel thin film nanocomposite (TFN) membrane comprising an alginate (SA) selective layer and a polyether sulfone (PSF) support membrane incorporating chitosan functionalized iron nanocomposite has been firstly developed for Sb removal via electrostatic self-assembly. The support matrix membrane contained iron nanocomposite (denoted as CIM) retained high water flux and porosity, and it reached a maximum removal capacity of 16.5 and 13.6 mg/g for Sb(III) and Sb(V) with nanofiller loading rate of 20% during static experiments, respectively. The coated SA top layer endowed the hybrid membrane (denoted as SA-CIM) to have a lower membrane flux, and have stronger retention abilities for Sb species than that by CIM during dynamic filtration experiments. The SA-CIM membranes also possess tolerable reversibility towards Sb removal. Benefiting from the negatively-charged dense selective layer and high adsorption capacity of the iron nanocomposites, the SA-CIM membranes demonstrated an enhanced removal capacity for Sb species via steric hindrance effect, electrostatic repulsion and adsorption. Our study offers a simple method to remove Sb by a novel polysaccharide functionalized hybrid membrane.
Collapse
Affiliation(s)
- Jianqiang Zeng
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China
| | - Pengfei Qi
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China.
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yahui Liu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China.
| |
Collapse
|
30
|
Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes. NANOMATERIALS 2021; 11:nano11051204. [PMID: 34062891 PMCID: PMC8147404 DOI: 10.3390/nano11051204] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023]
Abstract
The present study introduces the process performances of nitrophenols pertraction using new liquid supported membranes under the action of a magnetic field. The membrane system is based on the dispersion of silver–iron oxide nanoparticles in n-alcohols supported on hollow microporous polypropylene fibers. The iron oxide–silver nanoparticles are obtained directly through cyclic voltammetry electrolysis run in the presence of soluble silver complexes ([AgCl2]−; [Ag(S2O3)2]3−; [Ag(NH3)2]+) and using pure iron electrodes. The nanostructured particles are characterized morphologically and structurally by scanning electron microscopy (SEM and HFSEM), EDAX, XRD, and thermal analysis (TG, DSC). The performances of the nitrophenols permeation process are investigated in a variable magnetic field. These studies show that the flux and extraction efficiency have the highest values for the membrane system embedding iron oxide–silver nanoparticles obtained electrochemically in the presence of [Ag(NH3)2]+ electrolyte. It is demonstrated that the total flow of nitrophenols through the new membrane system depends on diffusion, convection, and silver-assisted transport.
Collapse
|
31
|
Wang Y, Wang J, Li G, Geng X, Hu T, Liu F. Reversible filtration redox of methylene blue in dimethylsulfoxide by manganese oxide loaded carbonaceous nanofibrous membrane through Fenton-like oxidation. J Colloid Interface Sci 2021; 588:436-445. [PMID: 33429340 DOI: 10.1016/j.jcis.2020.12.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 11/26/2022]
Abstract
The reversible redox of methylene blue in organic solvents was highly attractive, yet was rarely reported. In this study, we realized the continuous filtration redox of methylene blue (MB) in dimethylsulfoxide (DMSO) through Fenton-like oxidization by using MnO2 loaded carbonaceous nanofibrous membrane (cPAN-MnO2). The carbonaceous nanofibrous membrane (cPAN) was fabricated through electrospun of polyacrylonitrile and subsequent carbonization. The obtained cPAN nanofibrous membrane showed excellent stability in polar DMSO. MnO2 can be readily coated on cPAN nanofibers through an in situ redox reaction between cPAN and potassium permanganate. The fabricated cPAN-MnO2 membrane exhibited instantaneous reduction property towards MB in DMSO during a gravity-driven continuous filtration process. Interestingly, MB reduction was initiated by a typical Fenton-like oxidization, where hydroxyl radicals were firstly generated from hydrogen peroxide catalyzed by MnO2 in DMSO. Then hydroxyl radicals attacked DMSO to further produce methyl radicals, which resulted in the reduction of MB. In addition, MB reduction process in DMSO was reversible. Our study provides a novel strategy for continuous redox of MB in polar organic solvent and might give new ideas for MB applications.
Collapse
Affiliation(s)
- Yang Wang
- School of Science, North University of China, Taiyuan 030051, PR China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Jianqiang Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guiliang Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaolan Geng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Tuoping Hu
- School of Science, North University of China, Taiyuan 030051, PR China.
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
32
|
Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119080] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Nature-mimicking fabrication of antifouling photocatalytic membrane based on Ti/BiOI and polydopamine for synergistically enhanced photocatalytic degradation of tetracycline. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0616-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Rabajczyk A, Zielecka M, Cygańczuk K, Pastuszka Ł, Jurecki L. Nanometals-Containing Polymeric Membranes for Purification Processes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:513. [PMID: 33494485 PMCID: PMC7865470 DOI: 10.3390/ma14030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
A recent trend in the field of membrane research is the incorporation of nanoparticles into polymeric membranes, which could produce synergistic effects when using different types of materials. This paper discusses the effect of the introduction of different nanometals such as silver, iron, silica, aluminum, titanium, zinc, and copper and their oxides on the permeability, selectivity, hydrophilicity, conductivity, mechanical strength, thermal stability, and antiviral and antibacterial properties of polymeric membranes. The effects of nanoparticle physicochemical properties, type, size, and concentration on a membrane's intrinsic properties such as pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness are discussed, and the performance of nanocomposite membranes in terms of flux permeation, contaminant rejection, and antifouling capability are reviewed. The wide range of nanocomposite membrane applications including desalination and removal of various contaminants in water-treatment processes are discussed.
Collapse
Affiliation(s)
- Anna Rabajczyk
- Scientific and Research Center for Fire Protection National Research Institute, Nadwiślańska 213, 05-420 Józefów, Poland; (M.Z.); (K.C.); (Ł.P.); (L.J.)
| | | | | | | | | |
Collapse
|
35
|
Chen M, Wei L, Zhang W, Wang C, Xiao C. Fabrication and catalytic performance of a novel tubular PMIA/Ag@RGO nanocomposite nanofiber membrane. RSC Adv 2021; 11:22287-22296. [PMID: 35480820 PMCID: PMC9034193 DOI: 10.1039/d1ra03707b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
A novel tubular PMIA/Ag@RGO composite nanofiber membrane, which could be used in continuous catalysis process was fabricated via a facile and effective method.
Collapse
Affiliation(s)
- Mingxing Chen
- School of Textile and Garment
- Hebei Province Technology Innovation Center of Textile and Garment
- Hebei Key Laboratory of Flexible Functional Materials
- Hebei University of Science and Technology
- Shijiazhuang
| | - Lianying Wei
- School of Textile and Garment
- Hebei Province Technology Innovation Center of Textile and Garment
- Hebei Key Laboratory of Flexible Functional Materials
- Hebei University of Science and Technology
- Shijiazhuang
| | - Wei Zhang
- School of Textile and Garment
- Hebei Province Technology Innovation Center of Textile and Garment
- Hebei Key Laboratory of Flexible Functional Materials
- Hebei University of Science and Technology
- Shijiazhuang
| | - Chun Wang
- School of Textiles and Fashion
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Changfa Xiao
- School of Textiles and Fashion
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|
36
|
Single-walled carbon nanotubes grafted with dextran as additive to improve separation performance of polymer membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Li P, Wang Y, Huang H, Ma S, Yang H, Xu ZL. High efficient reduction of 4-nitrophenol and dye by filtration through Ag NPs coated PAN-Si catalytic membrane. CHEMOSPHERE 2021; 263:127995. [PMID: 33297034 DOI: 10.1016/j.chemosphere.2020.127995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 06/12/2023]
Abstract
Catalytic membrane plays an important role in environmental remedy. In this study, we reported an Ag coated membrane (PAN-Si-Cu-Ag) with a high catalytic activity to reduce 4-nitrophenol (4-NP) and methyl orange (MO) from water. The best performance is 99% reduction degree and 280 L m-2.h-1.bar-1 flux for (4-NP) reduction at 4-NP: NaBH4 = 1:50 (mM) during a 12-h filtration. The reduction degree for MO is above 90% and the flux is about 230 L m-2·h-1·bar-1, which is almost the best report till now. The Ag coated membrane was prepared by metal displacement-epitaxial growth on silica covalent grafted PAN membrane (PAN-Si). Silica atoms were used as linker to ensure the good adhesion between polymer and metal NPs, the loss amount of Ag NPs from the coated catalytic membrane is loss about 2 μg/cm2 after one month storage. Cheap metal NPs were firstly reduced on the surface of PAN-Si membrane and then used to displace Ag ions. Thus the obtained catalytic membrane showed a very high loading (28%). Finally, the catalytic filtration mechanism of 4-NP was distinguished by Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and adsorption measurement.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hairong Huang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shuai Ma
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hu Yang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
38
|
He Z, Mahmud S, Yang Y, Zhu L, Zhao Y, Zeng Q, Xiong Z, Zhao S. Polyvinylidene fluoride membrane functionalized with zero valent iron for highly efficient degradation of organic contaminants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117266] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Chen Y, Fan S, Qiu B, Chen J, Qin Y, Wang Y, Xiao Z, Mai Z, Bai K, Liu J. Enhanced Catalytic Performance of a Membrane Microreactor by Immobilizing ZIF-8-Derived Nano-Ag via Ion Exchange. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yu Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqing Fan
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Boya Qiu
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jiaojiao Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Yangmei Qin
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Yilin Wang
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zenghui Mai
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Ke Bai
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jingyun Liu
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
40
|
A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118378] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Saad A, Mills R, Wan H, Ormsbee L, Bhattacharyya D. Thermoresponsive PNIPAm–PMMA-Functionalized PVDF Membranes with Reactive Fe–Pd Nanoparticles for PCB Degradation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthony Saad
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Hongyi Wan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Lindell Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| |
Collapse
|
42
|
Qing W, Liu F, Yao H, Sun S, Chen C, Zhang W. Functional catalytic membrane development: A review of catalyst coating techniques. Adv Colloid Interface Sci 2020; 282:102207. [PMID: 32688044 DOI: 10.1016/j.cis.2020.102207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022]
Abstract
Catalytic membranes combine catalytic activity with conventional filtration membranes, thus enabling diverse attractive benefits into the conventional membrane filtration processes, such as easy catalyst reuse, antifouling, anti-microbial, and enhancing process efficiency. Up to date, tremendous progresses have been made on functional catalytic membrane preparation and applications, which significantly advances the competitiveness of membrane technologies in process industries. The present article provides a critical and holistic overview of the current state of knowledge on existing catalyst coating techniques for functional catalytic membrane development. Based on coating mechanisms, the techniques are generally categorized into physical and chemical surface coating routes. For each technique, we first introduce fundamental principle, followed by a critical discussion of their applications with representative case studies. Advantages and drawbacks are also emphasized for different surface coating technologies. Finally, future perspectives are highlighted to provide deep insights into their future developments.
Collapse
Affiliation(s)
- Weihua Qing
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| | - Fang Liu
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Hong Yao
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Shaobin Sun
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| | - Chen Chen
- Department of Municipal and Environmental Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| |
Collapse
|
43
|
Qin Y, Jian S, Bai K, Wang Y, Mai Z, Fan S, Qiu B, Chen Y, Wang Y, Xiao Z. Catalytic Membrane Reactor of Nano (Ag+ZIF-8)@Poly(tetrafluoroethylene) Built by Deep-Permeation Synthesis Fabrication. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00862] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yangmei Qin
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shizhao Jian
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ke Bai
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yuyang Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zenghui Mai
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Boya Qiu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yu Chen
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yinan Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
44
|
Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes. Polymers (Basel) 2020; 12:polym12030572. [PMID: 32143486 PMCID: PMC7182848 DOI: 10.3390/polym12030572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
State-of-the-art of flow-through catalytic reactors based on metal nanoparticles immobilized within the pores of nano-, micro- and macrosized polymeric gels and in the surface or hollow of polymeric membranes is discussed in this mini-review. The unique advantages of continuous flow-through nanocatalysis over the traditional batch-type analog are high activity, selectivity, productivity, recyclability, continuous operation, and purity of reaction products etc. The methods of fabrication of polymeric carriers and immobilization technique for metal nanoparticles on the surface of porous or hollow structures are considered. Several catalytic model reactions comprising of hydrolysis, decomposition, hydrogenation, oxidation, Suzuki coupling and enzymatic reactions in the flow system are exemplified. Realization of “on-off” switching mechanism for regulation of the rate of catalytic process through controlling the mass transfers of reactants in liquid media with the help of stimuli-responsive polymers is demonstrated. Comparative analysis of the efficiency of different flow-through catalytic reactors for various reactions is also surveyed.
Collapse
|
45
|
Gao Z, Yang H, Mao J, Kang L, Zhang R, Chai S, Wu J, Li W. Araneose Ti 3+ self-doping TiO 2/SiO 2 nanowires membrane for removal of aqueous MB under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9748-9759. [PMID: 31925693 DOI: 10.1007/s11356-019-07567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Araneose Ti3+ self-doped TiO2/SiO2 nanowires (RTiO2/SiO2) were prepared and anchored onto a polyethersulfone (PES) membrane. Careful characterizations and measurements indicated a covalent grafting of SiO2 onto reduced TiO2 (RTiO2) through Ti-O-Si linkages, acquiring uniformed RTiO2/SiO2 nanowires of almost complete anatase and benign hydrophilicity. The RTiO2/SiO2-based PES membrane showed a significantly enhanced visible light-driven degradation rate of methylene blue (MB) (90.7%), compared with that on bare PES (11.1%) and PES-RTiO2 (59.6%) membranes. The residual MB in filtered water was less than 5% after reusing three times. The normalized permeate flux of the modified membrane was 0.83, and the transmembrane pressure only increased by 0.4 MPa under irradiation of visible light. The improved performance of the PES-RTiO2/SiO2 was attributed to efficient intercept of MB molecular, light harvesting of visible light, and separation of charge carriers on araneose RTiO2/SiO2 nanowires.
Collapse
Affiliation(s)
- Zhao Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jingtao Mao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Li Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ruichen Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Siqi Chai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Junming Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Wei Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
46
|
Yu W, Liu Y, Shen L, Xu Y, Li R, Sun T, Lin H. Magnetic field assisted preparation of PES-Ni@MWCNTs membrane with enhanced permeability and antifouling performance. CHEMOSPHERE 2020; 243:125446. [PMID: 31995891 DOI: 10.1016/j.chemosphere.2019.125446] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Multiple wall carbon nanotubes (MWCNTs), as an excellent material, have been used in various applications including preparation of polymer-MWCNTs composite membranes. However, few reports have combined the magnetic Ni@MWCNTs with polyether sulfone (PES) membrane to improve its antifouling performance to humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA) and yeast (YE) solutions. In this study, the Ni@MWCNTs was generated by immersing MWCNTs into Ni2+ solution where in-situ reduction reaction was launched by the adsorbed Ag+ on MWCNTs. Since the loaded Ni endowed magnetism to MWCNTs, the Ni@MWCNTs can be easily attracted onto the membrane surface by an external magnetic field during the phase inversion process. The morphology measurements confirmed that the Ni@MWCNTs headed out of the PES-Ni@MWCNTs membrane surface. Because the MWCNTs played a role of free channels for water molecules, the composite membrane water flux reached to threefold flux of the pristine membrane. Moreover, the PES-Ni@MWCNTs membranes displayed the obviously enhanced antifouling ability during all the three alternative filtration cycles of water and BSA, SA, YE and HA solutions. In addition, the optimal PES-Ni@MWCNTs membrane demonstrated a flux recovery rate (FRR) of 67.89%, 85.53%, 60.28 and 90.12% for BSA, SA, YE and HA, respectively, which were not only much higher than that of the pristine membrane, but also exhibited significant improvements comparing with the previous studies. Further results of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory indicated that the modified membrane possessed advantageous interaction energies with contaminant molecules over the pristine membrane.
Collapse
Affiliation(s)
- Weiming Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Ying Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Tianyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| |
Collapse
|
47
|
Wang W, Sun H. Effect of different forms of nano‐ZnO on the properties of PVDF/ZnO hybrid membranes. J Appl Polym Sci 2020. [DOI: 10.1002/app.49070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Separation Membranes and Membrane ProcessesTiangong University Tianjin China
- School of Material Science and EngineeringTiangong University Tianjin China
| | - Hanshu Sun
- State Key Laboratory of Separation Membranes and Membrane ProcessesTiangong University Tianjin China
- School of Material Science and EngineeringTiangong University Tianjin China
| |
Collapse
|
48
|
Wan H, Islam MS, Briot NJ, Schnobrich M, Pacholik L, Ormsbee L, Bhattacharyya D. Pd/Fe nanoparticle integrated PMAA-PVDF membranes for chloro-organic remediation from synthetic and site groundwater. J Memb Sci 2020; 594:117454. [PMID: 31929677 PMCID: PMC6953629 DOI: 10.1016/j.memsci.2019.117454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The poly(methacrylic acid) (PMAA) was synthesized in the pores of commercial microfiltration PVDF membranes to allow incorporation of catalytic palladium/iron (Pd/Fe) nanoparticles for groundwater remediation. Particles of 17.1 ± 4.9 nm size were observed throughout the pores of membranes using a focused ion beam. To understand the role of Pd fractions and particle compositions, 2-chlorobiphenyl was used as a model compound in solution phase studies. Results show H2 production (Fe0 corrosion in water) is a function of Pd coverage on the Fe. Insufficient H2 production caused by higher coverage (> 10.4% for 5.5 wt%) hindered dechlorination rate. With 0.5 wt% Pd, palladized-Fe reaction rate (surface area normalized reaction rate, ksa = 0.12 L/(m2-h) was considerably higher than isolated Pd and Fe particles. For groundwater, in a single pass of Pd/Fe-PMAA-PVDF membranes (0.5 wt% Pd), chlorinated organics, such as trichloroethylene (177 ppb) and carbon tetrachloride (35 ppb), were degraded to 16 and 0.3 ppb, respectively, at 2.2 seconds of residence time. The degradation rate (observed ksa) followed the order of carbon tetrachloride > trichloroethylene > tetrachloroethylene > chloroform. A 36 h continuous flow study with organic mixture and the regeneration process show the potential for on-site remediation.
Collapse
Affiliation(s)
- Hongyi Wan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Md Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Nicolas J Briot
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | | | - Lucy Pacholik
- Department of Civil Engineering University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Lindell Ormsbee
- Department of Civil Engineering University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| |
Collapse
|
49
|
Oh W, Park JW. Facile Synthesis of Robust and Pore-Size-Tunable Nanoporous Covalent Framework Membrane by Simultaneous Gelation and Phase Separation of Covalent Network/Poly(methyl methacrylate) Mixture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32398-32407. [PMID: 31393696 DOI: 10.1021/acsami.9b10175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile route toward the preparation of organic-solvent-resistant and three-dimensionally continuous nanoporous covalent framework membrane. The membrane was prepared from the blend of linear poly(methyl methacrylate) and the cross-linked polyurea-based organic network, followed by selective removal of the linear polymer part. The pore morphologies, porosity, and solvent permeation properties of the membrane could be simply modified by the initial composition of the poly(methyl methacrylate) added to a sol of the organic network. The pore was three-dimensionally continuous with pore size ranging from 5 nm to tens of nanometers. Despite the broad pore size distribution, ultrafiltration of sub-10 nm solutes was realized with a molecular size cutoff near 5 nm thanks to the bicontinuous pore structure of the membrane. The nanoporous structure exhibited long-term resistance to organic solvents as well as thermal stability and mechanical strength. The separation performance remained unchanged in organic-rich medium for a prolonged time. Our strategy provides a synthetic route to a structurally robust, three-dimensionally continuous nanoporous polymeric membrane for potential application that necessitates the use of organic solvent.
Collapse
Affiliation(s)
- Wangsuk Oh
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Bukgu , Gwangju 61005 , Korea
| | - Ji-Woong Park
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Bukgu , Gwangju 61005 , Korea
| |
Collapse
|
50
|
Li Q, Liao Z, Fang X, Wang D, Xie J, Sun X, Wang L, Li J. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|