1
|
Dorosti F, Ge L, Wang H, Bell J, Lin R, Hou J, Zhu Z. Non-selective Defect Minimization towards Highly Efficient Metal-Organic Framework Membranes for Gas Separation. Angew Chem Int Ed Engl 2025; 64:e202417513. [PMID: 39551699 DOI: 10.1002/anie.202417513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The persistence of defects in polycrystalline membranes poses a substantial obstacle to reaching the theoretical molecular sieving separation and scaling up production. The low membrane selectivity in most reported literature is largely due to the unavoidable non-selective defects during synthesis, leading to a mismatch between the well-defined pore structure of polycrystalline molecular sieve materials. This paper presents a novel approach for minimizing non-selective defects in metal-organic framework (MOF) membranes by a constricted crystal growth strategy in a confined environment. The in situ ZIF formation using the densely packed seeding array between the substrate and the pre-grown top ZIF layer yields a confined membrane interlayer, which is highly uniform with a tightly packed crystalline structure. Unlike uncontrolled crystal growth, we purposely regulate the interlayer membrane growth in the direction parallel to the substrate. A notable 99 % decrease in defects in the confined interlayer was achieved compared to the random-grown top layer, leading to a ~353 % increment in H2/N2 selectivity over the non-confined reference MOF membrane. The performance of this new membrane sits in the optimal range above the Robeson upper bound. The membrane boasts a balanced high H2 permeability (>5000 Barrer) and selectivity (>50), significantly surpassing peer ZIF membranes.
Collapse
Affiliation(s)
- Fatereh Dorosti
- Department of Chemical Engineering, University of Queensland, Brisbane, QLD 4072, Australia
| | - Lei Ge
- Center for Future Materials, University of South Queensland, Springfield, QLD 4350, Australia
| | - Hao Wang
- Center for Future Materials, University of South Queensland, Springfield, QLD 4350, Australia
| | - John Bell
- Center for Future Materials, University of South Queensland, Springfield, QLD 4350, Australia
| | - Rijia Lin
- Department of Chemical Engineering, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- Department of Chemical Engineering, University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhonghua Zhu
- Department of Chemical Engineering, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Xuan Z, Shen W, Liu H, Ni B, Lian Z, Li L, Chen J, Guo B, Wang S, Ye J. One-pot green synthesis of ZIF-8/IgG composite for the precise orientation and protection of antibody and its application in purification and detection of aflatoxins in peanut oil. Food Chem 2024; 449:139272. [PMID: 38604030 DOI: 10.1016/j.foodchem.2024.139272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
This study presents a novel approach toward the one-pot green synthesis of ZIF-8/IgG composite, focusing on its precise orientation and protection of the anti-aflatoxins antibody. The antibody orientation is achieved through the specific binding of IgG to the Fc region of the antibody, while the antibody protection is accomplished by the structural change restriction of ZIF-8 framework to the antibody. Consequently, the antibody exhibits enhanced target capability and significantly improved tolerance to organic solvents. The ZIF-8/IgG/anti-AFT was employed for the purification and detection of AFTs by coupling with UPLC. Under optimized conditions, the recoveries of spiked AFTs in peanut oils are between 86.1% and 106.4%, with relative standard deviations (RSDs) ranging from 0.8% to 8.8%. The linearity range is 0.5-20.0 ng for AFB1 and AFG1, 0.125-5.0 ng for AFB2 and AFG2, the limit of detection is 0.1 ng for AFB1 and AFG1, 0.03 ng for AFB2 and AFG2.
Collapse
Affiliation(s)
- Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Wenjie Shen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Baoxia Ni
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Ziye Lian
- Beijing City University, No.6 Queen's Store Village, Haidian District, Beijing 100094, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Baoyuan Guo
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Luo X, Zhang M, Hu Y, Xu Y, Zhou H, Xu Z, Hao Y, Chen S, Chen S, Luo Y, Lin Y, Zhao J. Wrinkled metal-organic framework thin films with tunable Turing patterns for pliable integration. Science 2024; 385:647-651. [PMID: 39116246 DOI: 10.1126/science.adn8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Flexible integration spurs diverse applications in metal-organic frameworks (MOFs). However, current configurations suffer from the trade-off between MOF loadings and mechanical compliance. We report a wrinkled configuration of MOF thin films. We established an interfacial synthesis confined and controlled by a polymer topcoat and achieved multiple Turing motifs in the wrinkled thin films. These films have complete MOF surface coverage and exhibit strain tolerance up to 53.2%. The enhanced mechanical properties allow film transfer onto various substrates. We obtained membranes with large H2/CO2 selectivity (41.2) and high H2 permeance (8.46 × 103 gas permeation units), showcasing negligible defects after transfer. We also achieved soft humidity sensors on delicate electrodes by avoiding exposure to harsh MOF synthesis conditions. These results highlight the potential of wrinkled MOF thin films for plug-and-play integration.
Collapse
Affiliation(s)
- Xinyu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Ming Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yubin Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yan Xu
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haofei Zhou
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinxuan Hao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Sheng Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengfu Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| |
Collapse
|
4
|
Shao W, Zhou YW, Chen Z, Chen YL, Li Y, Ban YJ, Yang WS, Xue M, Chen XM. In situ electrochemical potential-induced synthesis of metal organic framework membrane on polymer support for H 2/CO 2 separation. J Colloid Interface Sci 2024; 665:693-701. [PMID: 38552584 DOI: 10.1016/j.jcis.2024.03.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Metal-Organic Framework (MOF) membranes act as selective layers have offered unprecedented opportunities for energy-efficient and cost-effective gas separation. Searching for the green and sustainable synthesis method of dense MOF membrane has received huge attention in both academia and industry. In this work, we demonstrate an in situ electrochemical potential-induced synthesis strategy to aqueously fabricate Metal Azolate Framework-4 (MAF-4) membranes on polypropylene (PP) support. The constant potential can induce the heterogeneous nucleation and growth of MAF-4, resulting an ultrathin membrane with the thickness of only 390 nm. This high-quality membrane exhibits a high H2/CO2 separation performance with the H2 permeance as high as 1565.75 GPU and selectivity of 11.6. The deployment of this environment friendly one-step fabrication method under mild reaction conditions, such as low-cost polymer substrate, water instead of organic solvent, room temperature and ambient pressure shows great promise for the scale-up of MOF membranes.
Collapse
Affiliation(s)
- Wei Shao
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-Wu Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhen Chen
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Le Chen
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Li
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yu-Jie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-Shen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ming Xue
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiao-Ming Chen
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Quan Y, Parker TF, Hua Y, Jeong HK, Wang Q. Process Elucidation and Hazard Analysis of the Metal–Organic Framework Scale-Up Synthesis: A Case Study of ZIF-8. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Yufeng Quan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Trent F. Parker
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yinying Hua
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hae-Kwon Jeong
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Qingsheng Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Lian H, Bao B, Chen J, Yang W, Yang Y, Hou R, Ju S, Pan Y. Controllable synthesis of ZIF-8 interlocked membranes for propylene/propane separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Choi E, Choi JI, Kim Y, Kim YJ, Eum K, Choi Y, Kwon O, Kim M, Choi W, Ji H, Jang SS, Kim DW. Graphene Nanoribbon Hybridization of Zeolitic Imidazolate Framework Membranes for Intrinsic Molecular Separation. Angew Chem Int Ed Engl 2022; 61:e202214269. [DOI: 10.1002/anie.202214269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Eunji Choi
- Department of Chemical and Biomolecular Engineering Yonsei University Yonsei-ro 50, Seodaemun-gu Seoul 03722 (Republic of Korea
| | - Ji Il Choi
- School of Materials Science and Engineering Georgia Institute of Technology 771 Ferst Drive NW Atlanta USA
| | - Yong‐Jae Kim
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daehak-ro 291, Yuseong-gu Daejeon 34141 (Republic of Korea
| | - Yeong Jae Kim
- Department of Chemical Engineering Soongsil University Sangdo-ro 369, Dongjak-gu Seoul 06978 (Republic of Korea
| | - Kiwon Eum
- Department of Chemical Engineering Soongsil University Sangdo-ro 369, Dongjak-gu Seoul 06978 (Republic of Korea
| | - Yunkyu Choi
- Department of Chemical and Biomolecular Engineering Yonsei University Yonsei-ro 50, Seodaemun-gu Seoul 03722 (Republic of Korea
| | - Ohchan Kwon
- Department of Chemical and Biomolecular Engineering Yonsei University Yonsei-ro 50, Seodaemun-gu Seoul 03722 (Republic of Korea
| | - Minsu Kim
- Department of Chemical and Biomolecular Engineering Yonsei University Yonsei-ro 50, Seodaemun-gu Seoul 03722 (Republic of Korea
| | - Wooyoung Choi
- Department of Chemical and Biomolecular Engineering Yonsei University Yonsei-ro 50, Seodaemun-gu Seoul 03722 (Republic of Korea
| | - Hyungjoon Ji
- Department of Chemical and Biomolecular Engineering Yonsei University Yonsei-ro 50, Seodaemun-gu Seoul 03722 (Republic of Korea
| | - Seung Soon Jang
- School of Materials Science and Engineering Georgia Institute of Technology 771 Ferst Drive NW Atlanta USA
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering Yonsei University Yonsei-ro 50, Seodaemun-gu Seoul 03722 (Republic of Korea
| |
Collapse
|
8
|
Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Highly durable ZIF-8 tubular membranes via precursor-assisted processing for propylene/propane separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Li Y, Ma C, Zhang X. Localized conversion of ZnO nanorods for fabricating Metal-Organic framework MAF-5 membranes for hydrogen separation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Regulating interface nucleus growth of CuTCPP membranes via polymer collaboration method. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Shahsavari M, Mohammadzadeh Jahani P, Sheikhshoaie I, Tajik S, Aghaei Afshar A, Askari MB, Salarizadeh P, Di Bartolomeo A, Beitollahi H. Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:447. [PMID: 35057165 PMCID: PMC8779251 DOI: 10.3390/ma15020447] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023]
Abstract
Metal organic frameworks (MOF) are a class of hybrid networks of supramolecular solid materials comprising a large number of inorganic and organic linkers, all bound to metal ions in a well-organized fashion. Zeolitic imidazolate frameworks (ZIFs) are a sub-group of MOFs with imidazole as an organic linker to metals; it is rich in carbon, nitrogen, and transition metals. ZIFs combine the classical zeolite characteristics of thermal and chemical stability with pore-size tunability and the rich topological diversity of MOFs. Due to the energy crisis and the existence of organic solvents that lead to environmental hazards, considerable research efforts have been devoted to devising clean and sustainable synthesis routes for ZIFs to reduce the environmental impact of their preparation. Green chemistry is the key to sustainable development, as it will lead to new solutions to existing problems. Moreover, it will present opportunities for new processes and products and, at its heart, is scientific and technological innovation. The green chemistry approach seeks to redesign the materials that make up the basis of our society and our economy, including the materials that generate, store, and transport our energy, in ways that are benign for humans and the environment and that possess intrinsic sustainability. This study covers the principles of green chemistry as used in designing strategies for synthesizing greener, less toxic ZIFs the consume less energy to produce. First, the necessity of green methods in today's society, their replacement of the usual non-green methods and their benefits are discussed; then, various methods for the green synthesis of ZIF compounds, such as hydrothermally, ionothermally, and by the electrospray technique, are considered. These methods use the least harmful and toxic substances, especially concerning organic solvents, and are also more economical. When a compound is synthesized by a green method, a question arises as to whether these compounds can replace the same compounds as synthesized by non-green methods. For example, is the thermal stability of these compounds (which is one of the most important features of ZIFs) preserved? Therefore, after studying the methods of identifying these compounds, in the last part, there is an in-depth discussion on the various applications of these green-synthesized compounds.
Collapse
Affiliation(s)
- Mahboobeh Shahsavari
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (M.S.); (I.S.)
| | | | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (M.S.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (S.T.); (A.A.A.)
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (S.T.); (A.A.A.)
| | - Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, Rasht 4199613776, Iran;
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran;
| | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello” and “Interdepartmental Center NANOMATES”, University of Salerno, 84084 Fisciano, SA, Italy
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| |
Collapse
|
13
|
Yu G, Shangguan X, Wang Z, Rong H, Wang K, Zhang Y, Shao T, Zou X. Seed assisted synthesis of anionic metal organic framework membrane for selective and permeable hydrogen separation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01600h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen selective metal organic framework (MOF) membranes with excellent performances are still in high demand. Here, we are developing an anionic MOF material of CPM-5 into a membrane for H2...
Collapse
|
14
|
Chen H, Wang X, Liu Y, Yang T, Yang N, Meng B, Tan X, Liu S. A dual-layer ZnO–Al2O3 hollow fiber for directly inducing the formation of ZIF membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Ma C, Liu H, Qiu J, Zhang X. Bimetallic Zn/Co-ZIF tubular membrane for highly efficient pervaporation separation of Methanol/MTBE mixture. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
|
17
|
Abstract
In the last twenty years, research activity around the environmental applications of metal–organic frameworks has bloomed due to their CO2 capture ability, tunable properties, porosity, and well-defined crystalline structure. Thus, hundreds of MOFs have been developed. However, the impact of their production on the environment has not been investigated as thoroughly as their potential applications. In this work, the environmental performance of various synthetic routes of MOF nanoparticles, in particular ZIF-8, is assessed through a life cycle assessment. For this purpose, five representative synthesis routes were considered, and synthesis data were obtained based on available literature. The synthesis included different solvents (de-ionized water, methanol, dimethylformamide) as well as different synthetic steps (i.e., hours of drying, stirring, precursor). The findings revealed that the main environmental weak points identified during production were: (a) the use of dimethylformamide (DMF) and methanol (MeOH) as substances impacting environmental sustainability, which accounted for more than 85% of the overall environmental impacts in those synthetic routes where they were utilized as solvents and as cleaning agents at the same time; (b) the electricity consumption, especially due to the Greek energy mix which is fossil-fuel dependent, and accounted for up to 13% of the overall environmental impacts in some synthetic routes. Nonetheless, for the optimization of the impacts provided by the energy use, suggestions are made based on the use of alternative, cleaner renewable energy sources, which (for the case of wind energy) will decrease the impacts by up to 2%.
Collapse
|
18
|
Abdul Hamid MR, Shean Yaw TC, Mohd Tohir MZ, Wan Abdul Karim Ghani WA, Sutrisna PD, Jeong HK. Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Zhong L, Ding J, Qian J, Hong M. Unconventional inorganic precursors determine the growth of metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213804] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Wu R, Li Y, Huang A. Synthesis of high-performance Co-based ZIF-67 membrane for H2 separation by using cobalt ions chelated PIM-1 as interface layer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Amusa AA, Ahmad AL, Adewole JK. Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. MEMBRANES 2020; 10:E370. [PMID: 33255866 PMCID: PMC7760533 DOI: 10.3390/membranes10120370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
In this paper, a review of the compatibility of polymeric membranes with lignocellulosic biomass is presented. The structure and composition of lignocellulosic biomass which could enhance membrane fabrications are considered. However, strong cell walls and interchain hindrances have limited the commercial-scale applications of raw lignocellulosic biomasses. These shortcomings can be surpassed to improve lignocellulosic biomass applications by using the proposed pretreatment methods, including physical and chemical methods, before incorporation into a single-polymer or copolymer matrix. It is imperative to understand the characteristics of lignocellulosic biomass and polymeric membranes, as well as to investigate membrane materials and how the separation performance of polymeric membranes containing lignocellulosic biomass can be influenced. Hence, lignocellulosic biomass and polymer modification and interfacial morphology improvement become necessary in producing mixed matrix membranes (MMMs). In general, the present study has shown that future membrane generations could attain high performance, e.g., CO2 separation using MMMs containing pretreated lignocellulosic biomasses with reachable hydroxyl group radicals.
Collapse
Affiliation(s)
- Abiodun Abdulhameed Amusa
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Jimoh Kayode Adewole
- Process Engineering Department, International Maritime College, Sohar 322, Oman;
| |
Collapse
|
22
|
Abdul Hamid MR, Jeong HK. Flow synthesis of polycrystalline ZIF-8 membranes on polyvinylidene fluoride hollow fibers for recovery of hydrogen and propylene. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Wu W, Jia M, Su J, Li Z, Li W. Air–water interfacial synthesis of metal–organic framework hollow fiber membranes for water purification. AIChE J 2020. [DOI: 10.1002/aic.16238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wufeng Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Miaomiao Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Jingyi Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Zhanjun Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| |
Collapse
|
24
|
Zhou Z, Wu C, Zhang B. ZIF-67 Membranes Synthesized on α-Al2O3-Plate-Supported Cobalt Nanosheets with Amine Modification for Enhanced H2/CO2 Permselectivity. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhongming Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chao Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Baoquan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
25
|
Li S, Zou H, Xu D, Shuai M, Xu H, Li Y, Zhong S. Uniform Tb-based coordination polymer microspheres and their film: synthesis, characterization, and luminescence properties. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00991-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Wang Y, Zhang H, Wang X, Zou C, Meng B, Tan X. Growth of ZIF-8 Membranes on Ceramic Hollow Fibers by Conversion of Zinc Oxide Particles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Hangliao Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xiaobin Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Chengxian Zou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bo Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xiaoyao Tan
- Department of Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|