1
|
Sun Y, Yan M, Li Z, Wang L, Chen X, Luo S. Diffusion-Regulated Interfacial Polymerization of Hierarchically Microporous Polyamide Membranes for Permselective Gas Separations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51532-51541. [PMID: 39263915 DOI: 10.1021/acsami.4c10941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Interfacial polymerization has emerged as a robust method for fabricating task-specific polyamide (PA) membranes. However, the limited microporosity of highly cross-linked PA membranes constrains their effectiveness in gas separation applications. Herein, we introduce an ionic liquid (IL)-regulated interfacial polymerization process to fabricate polyamide nanofilms incorporating kinked tetrakis (4-aminophenyl) methane monomers. In situ ultraviolet-visible spectroscopy demonstrates that the diffusion of 1,3,5-benzenetricarbonyl trichloride (TMC) toward the interface increases with the IL/H2O ratio, leading to the formation of a more compact membrane with a higher cross-linking degree. The PA-TAM7/3-60 min membrane exhibits a CO2 permeance of 29.8 GPU and a CO2/CH4 selectivity of 109, exceeding the 2008 Robeson upper bond. Additionally, the highly cross-linked structure imparts the membranes with notable plasticization resistance. Mixed-gas tests (CO2/CH4 = 50/50, v/v) reveal that the PA-TAM7/3-60 min membrane experiences only a 2% reduction in CO2 permeance and a 10% decrease in CO2/CH4 selectivity at a CO2 partial pressure of 300 PSIG, compared to its performance at 30 PSIG. The ease of tuning membrane structure and gas separation performance, along with its excellent plasticization resistance, underscores the potential of these PA membranes for task-specific gas separations.
Collapse
Affiliation(s)
- Ying Sun
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Mingzhu Yan
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Zhenyuan Li
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Ling Wang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Xiaobo Chen
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Shuangjiang Luo
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| |
Collapse
|
2
|
Geng H, Zhang W, Zhao X, Shao W, Wang H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. MEMBRANES 2024; 14:190. [PMID: 39330531 PMCID: PMC11434543 DOI: 10.3390/membranes14090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial wastewater treatment, and other fields. With the continuous progress of scientific and technological innovation and the increasing demand for use, NF/RO membranes based on the TFC structure are constantly being upgraded. This paper presents the recent research progress of NF and RO membranes based on TFC structures and their applications in different fields, especially the formation mechanism and regulation of selective layer structures and the modification methods of selective layers. Our summary provides fundamental insights into the understanding of NF and RO membrane processes and hopefully triggers further thinking on the development of membrane filtration process optimization.
Collapse
Affiliation(s)
- Huibin Geng
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Weihao Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoxu Zhao
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Haitao Wang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
3
|
Zhao S, Zhao Z, Zhang X, Zha Z, Tong T, Wang R, Wang Z. Polyamide Membranes with Tunable Surface Charge Induced by Dipole-Dipole Interaction for Selective Ion Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5174-5185. [PMID: 38451543 DOI: 10.1021/acs.est.3c10195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Nanofiltration (NF) has the potential to achieve precise ion-ion separation at the subnanometer scale, which is necessary for resource recovery and a circular water economy. Fabricating NF membranes for selective ion separation is highly desirable but represents a substantial technical challenge. Dipole-dipole interaction is a mechanism of intermolecular attractions between polar molecules with a dipole moment due to uneven charge distribution, but such an interaction has not been leveraged to tune membrane structure and selectivity. Herein, we propose a novel strategy to achieve tunable surface charge of polyamide membrane by introducing polar solvent with a large dipole moment during interfacial polymerization, in which the dipole-dipole interaction with acyl chloride groups of trimesoyl chloride (TMC) can successfully intervene in the amidation reaction to alter the density of surface carboxyl groups in the polyamide selective layer. As a result, the prepared positively charged (PEI-TMC)-NH2 and negatively charged (PEI-TMC)-COOH composite membranes, which show similarly high water permeance, demonstrate highly selective separations of cations and anions in engineering applications, respectively. Our findings, for the first time, confirm that solvent-induced dipole-dipole interactions are able to alter the charge type and density of polyamide membranes and achieve tunable surface charge for selective and efficient ion separation.
Collapse
Affiliation(s)
- Song Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhenyi Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xinzhu Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhiyuan Zha
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Rong Wang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Singapore 637141, Singapore
| | - Zhi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Xin JH, Fan HY, Guo BB, Yang HC, Zhu CY, Zhang C, Xu ZK. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chem Commun (Camb) 2023; 59:13258-13271. [PMID: 37869905 DOI: 10.1039/d3cc04171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.
Collapse
Affiliation(s)
- Jia-Hui Xin
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hong-Yu Fan
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Bian-Bian Guo
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Ye Zhu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Radmanesh F, Tena A, Sudhölter EJR, Hempenius MA, Benes NE. Nonaqueous Interfacial Polymerization-Derived Polyphosphazene Films for Sieving or Blocking Hydrogen Gas. ACS APPLIED POLYMER MATERIALS 2023; 5:1955-1964. [PMID: 36935655 PMCID: PMC10012169 DOI: 10.1021/acsapm.2c02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A series of cyclomatrix polyphosphazene films have been prepared by nonaqueous interfacial polymerization (IP) of small aromatic hydroxyl compounds in a potassium hydroxide dimethylsulfoxide solution and hexachlorocyclotriphosphazene in cyclohexane on top of ceramic supports. Via the amount of dissolved potassium hydroxide, the extent of deprotonation of the aromatic hydroxyl compounds can be changed, in turn affecting the molecular structure and permselective properties of the thin polymer networks ranging from hydrogen/oxygen barriers to membranes with persisting hydrogen permselectivities at high temperatures. Barrier films are obtained with a high potassium hydroxide concentration, revealing permeabilities as low as 9.4 × 10-17 cm3 cm cm-2 s-1 Pa-1 for hydrogen and 1.1 × 10-16 cm3 cm cm-2 s-1 Pa-1 for oxygen. For films obtained with a lower concentration of potassium hydroxide, single gas permeation experiments reveal a molecular sieving behavior, with a hydrogen permeance of around 10-8 mol m-2 s-1 Pa-1 and permselectivities of H2/N2 (52.8), H2/CH4 (100), and H2/CO2 (10.1) at 200 °C.
Collapse
Affiliation(s)
- Farzaneh Radmanesh
- Membrane
Science and Technology Cluster, Faculty of Science and Technology,
MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Alberto Tena
- The
European Membrane Institute Twente, Faculty of Science and Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
- Surfaces
and Porous Materials (SMAP), Associated Research Unit to CSIC, UVainnova
Bldg, Po de Belén 11 and Institute of Sustainable Processes
(ISP), Dr. Mergelina S/n, University of
Valladolid, 47071 Valladolid, Spain
| | - Ernst J. R. Sudhölter
- Membrane
Science and Technology Cluster, Faculty of Science and Technology,
MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Organic
Materials & Interfaces, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, 2629 HZ Delft, The Netherlands
| | - Mark A. Hempenius
- Sustainable
Polymer Chemistry, Faculty of Science and Technology, MESA Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Nieck E. Benes
- Membrane
Science and Technology Cluster, Faculty of Science and Technology,
MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
6
|
Cheng J, Li Z, Bao X, Zhang R, Zhang Z, Hai G, Sun K, Shi W. Retarding the diffusion rate of piperazine through the interface of aqueous/organic phase: Bis-tris propane tuned the trans-state of ultra-low concentration piperazine. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Wang Y, Chang H, Jiang S, Chen J, Wang J, Liang H, Li G, Tang X. An efficient co-solvent tailoring interfacial polymerization for nanofiltration: Enhanced selectivity and mechanism. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Xu GR, An ZH, Min-Wang, Ke-Xu, Zhao HL, Liu Q. Polyamide Layer Modulation for PA-TFC Membranes Optimization: Developments, Mechanisms, and Implications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Liu Y, Wu H, Guo S, Cong C, Du J, Xin Z, Zhang H, Wang J, Wang Z. Is the solvent activation strategy before heat treatment applicable to all reverse osmosis membranes? J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Rigid twisted structured PA membranes for organic solvent nanofiltration via co-solvent assisted interfacial polymerization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Nulens I, Peters R, Verbeke R, Davenport DM, Van Goethem C, De Ketelaere B, Goos P, Agrawal KV, Vankelecom IF. MPD and TMC supply as parameters to describe the synthesis-morphology-performance relationship of polyamide thin film composite membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Cao Y, Wan Y, Chen C, Luo J. Preparation of acid-resistant nanofiltration membrane with dually charged separation layer for enhanced salts removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Yang X, Huang J, Yang F, Wang W, Xue C, Zhou W, Wu Y, Shao L, Zhang Y. Metal-organophosphate biphasic interfacial coordination reaction synthesizing nanofiltration membranes with the ultrathin selective layer, excellent acid-resistance and antifouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120521] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Han X, Wang Z, Wang J. Preparation of highly selective reverse osmosis membranes by introducing a nonionic surfactant in the organic phase. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Investigation of aqueous and organic co-solvents roles in fabricating seawater reverse osmosis membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Mechanisms of Efficient Desalination by a Two-Dimensional Porous Nanosheet Prepared via Bottom-Up Assembly of Cucurbit[6]urils. MEMBRANES 2022; 12:membranes12030252. [PMID: 35323727 PMCID: PMC8954457 DOI: 10.3390/membranes12030252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022]
Abstract
Many researchers have examined the desalination performance of various kinds of two-dimensional (2D) porous nanosheets prepared by top-down approaches such as forming pores on the plain based on molecular dynamics (MD) simulations. In contrast, it is rare to find MD simulations addressing the desalination performance of a 2D porous nanosheet prepared by bottom-up approaches. We investigated the desalination performance of a 2D porous nanosheet prepared by the assembly of cucurbit[6]uril (CB[6]) via MD simulation. The model 2D CB[6] nanosheet features CB[6] with the carbonyl-fringed portals of 3.9 Å and the interstitial space filled with hydrophobic linkers and dangling side chains. Our MD simulation demonstrated that the 2D porous CB[6] nanosheet possesses a 70 to 140 times higher water permeance than commercial reverse osmosis membranes while effectively preventing salt passage. The extremely high water permeance and perfect salt rejection stem from not only CB[6]’s nature (hydrophilicity, negative charge, and the right dimension for size exclusion) but also the hydrophobic and tightly filled interstitial space. We also double-checked that the extremely high water permeance was attributable to only CB[6]’s nature, not water leakage, by contrasting it with a 2D nanosheet comprising CB[6]-spermine complexes. Lastly, this paper provides a discussion on a better cucurbituril homologue to prepare a next-generation desalination membrane possessing great potential to such an extent to surpass the 2D porous CB[6] nanosheet based on quantum mechanics calculations.
Collapse
|
18
|
Fallahnejad Z, Bakeri G, Ismail AF. Performance of TFN nanofiltration membranes through embedding internally modified titanate nanotubes. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1036-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Lim YJ, Goh K, Lai GS, Zhao Y, Torres J, Wang R. Unraveling the role of support membrane chemistry and pore properties on the formation of thin-film composite polyamide membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Radmanesh F, Pilz M, Ansaloni L, Peters TA, Louradour E, van Veen H, Høvik D, Hempenius MA, Benes NE. Comparing amine- and ammonium functionalized silsesquioxanes for large scale synthesis of hybrid polyimide high-temperature gas separation membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Centrifugal reverse osmosis (CRO) − a novel energy-efficient membrane process for desalination near local thermodynamic equilibrium. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
|
24
|
On the Control Strategy to Improve the Salt Rejection of a Thin-Film Composite Reverse Osmosis Membrane. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the specific energy consumption (SEC) required for reverse osmosis (RO) desalination has been steeply reduced over the past few decades, there is an increasing demand for high-selectivity membranes. However, it is still hard to find research papers empirically dealing with increasing the salt rejection of RO membranes and addressing the SEC change possibly occurring while increasing salt rejection. Herein, we examined the feasibility of the process and material approaches to increase the salt rejection of RO membranes from the perspective of the SEC and weighed up a better approach to increase salt rejection between the two approaches. A process approach was confirmed to have some inherent limitations in terms of the trade-off between water permeability and salt rejection. Furthermore, a process approach is inappropriate to alter the intrinsic salt permeability of RO membranes, such that it should be far from a fundamental improvement in the selectivity of RO membranes. Thus, we could conclude that a material approach is necessary to make a fundamental improvement in the selectivity of RO membranes. This paper also provides discussion on the specific demands for RO membranes featuring superior mechanical properties and excellent water/salt permselectivity to minimize membrane compaction while maximizing the selectivity.
Collapse
|
25
|
Lim YJ, Lee SM, Wang R, Lee J. Emerging Materials to Prepare Mixed Matrix Membranes for Pollutant Removal in Water. MEMBRANES 2021; 11:508. [PMID: 34357158 PMCID: PMC8304803 DOI: 10.3390/membranes11070508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/06/2023]
Abstract
Various pollutants of different sizes are directly (e.g., water-borne diseases) and indirectly (e.g., accumulation via trophic transfer) threatening our water health and safety. To cope with this matter, multifaceted approaches are required for advanced wastewater treatment more efficiently. Wastewater treatment using mixed matrix membranes (MMMs) could provide an excellent alternative since it could play two roles in pollutant removal by covering adsorption and size exclusion of water contaminants simultaneously. This paper provides an overview of the research progresses and trends on the emerging materials used to prepare MMMs for pollutant removal from water in the recent five years. The transition of the research trend was investigated, and the most preferred materials to prepare MMMs were weighed up based on the research trend. Various application examples where each emerging material was used have been introduced along with specific mechanisms underlying how the better performance was realized. Lastly, the perspective section addresses how to further improve the removal efficiency of pollutants in an aqueous phase, where we could find a niche to spot new materials to develop environmentally friendly MMMs, and where we could further apply MMMs.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, Singapore 637553, Singapore
| | - So Min Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea;
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea;
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea
| |
Collapse
|
26
|
Lim YJ, Goh K, Kurihara M, Wang R. Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication – A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119292] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Lim YJ, Goh K, Lai GS, Ng CY, Torres J, Wang R. Fast water transport through biomimetic reverse osmosis membranes embedded with peptide-attached (pR)-pillar[5]arenes water channels. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
A thin film composite membrane prepared from monomers of vanillin and trimesoyl chloride for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Ang MBMY, Marquez JAD, Huang SH, Lee KR. A recent review of developmental trends in fabricating pervaporation membranes through interfacial polymerization and future prospects. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Cosolvent-Driven Interfacial Polymerization for Superior Separation Performance of Polyurea-Based Pervaporation Membrane. Polymers (Basel) 2021; 13:polym13081179. [PMID: 33916885 PMCID: PMC8067614 DOI: 10.3390/polym13081179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
A thin-film composite (TFC) polyurea membrane was fabricated for the dehydration of an aqueous tetrahydrofuran (THF) solution through interfacial polymerization, wherein polyethyleneimine (a water-soluble amine monomer) and m-xylene diisocyanate (an oil-soluble diisocyanate monomer) were reacted on the surface of a modified polyacrylonitrile (mPAN) substrate. Cosolvents were used to tailor the membrane properties and increase the membrane permeation flux. Four types of alcohols that differed in the number of carbon (methanol, ethanol, isopropanol, and tert-butanol) were added as cosolvents, serving as swelling agents, to the aqueous-phase monomer solution, and their effect on the membrane properties and pervaporation separation was discussed. Attenuated total reflection Fourier transform infrared spectroscopy confirmed the formation of a polyurea layer on mPAN. Field emission scanning electron microscopy and surface water contact angle analysis indicated no change in the membrane morphology and hydrophilicity, respectively, despite the addition of cosolvents for interfacial polymerization. The TFC membrane produced when ethanol was the cosolvent exhibited the highest separation performance (permeation flux = 1006 ± 103 g·m−2·h−1; water concentration in permeate = 98.8 ± 0.3 wt.%) for an aqueous feed solution containing 90 wt.% THF at 25 °C. During the membrane formation, ethanol caused the polyurea layer to loosen and to acquire a certain degree of cross-linking. The optimal fabrication conditions were as follows: 10 wt.% ethanol as cosolvent; membrane curing temperature = 50 °C; membrane curing time = 30 min.
Collapse
|
31
|
Lee J, Zhou F, Baek K, Kim W, Su H, Kim K, Wang R, Bae TH. Use of rigid cucurbit[6]uril mediating selective water transport as a potential remedy to improve the permselectivity and durability of reverse osmosis membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
De Guzman MR, Ang MBMY, Yeh YL, Yang HL, Huang SH, Lee KR. Improved pervaporation efficiency of thin-film composite polyamide membranes fabricated through acetone-assisted interfacial polymerization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Karami P, Khorshidi B, Shamaei L, Beaulieu E, Soares JBP, Sadrzadeh M. Nanodiamond-Enabled Thin-Film Nanocomposite Polyamide Membranes for High-Temperature Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53274-53285. [PMID: 33170622 DOI: 10.1021/acsami.0c15194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite growing demands for high-temperature wastewater treatment, most available polymeric membranes are limited to mild operating temperatures (<50 °C) and become less efficient at high temperatures. Herein we show how to make thermally stable reverse osmosis thin-film nanocomposite (TFN) membranes by embedding nanodiamond (ND) particles. Polyamide composite layers containing different loadings of surface-modified ND particles were synthesized through interfacial polymerization. The reactive functional groups and the hydrophilic surface of the NDs intensified the interactions of the nanoparticles with the polymer matrix and increased the surface wettability of the TFN membranes. Contact angle measurement showed a maximum decrease from 88.4° for the pristine membrane to 58.3° for the TFN membrane fabricated with 400 ppm ND particles. The addition of ND particles and ethyl acetate created larger surface features on the polyamide surface of TFN membranes. The average roughness of the membranes increased from 108.4 nm for the pristine membrane to 177.5 nm for the TFN membrane prepared with highest ND concentration. The ND-modified TFN membranes showed a higher pure water flux (up to 76.5 LMH) than the pristine membrane (17 LMH) at ambient temperature at 220 psi and room temperature. The TFN membrane with the highest loading of ND particles overcame the trade-off relation between the water flux and NaCl rejection with 76.5 LMH and 97.3% when 2000 ppm of NaCl solution was filtered at 220 psi. Furthermore, with increasing ND concentration, the TFN membrane showed a lower flux decline at high temperatures over time. The TFN400 prepared with 400 ppm of m-phenylene diamine functionalized ND particles had a 13% flux decline over a 9 h filtration test at 75 °C. This research provides a promising path to the development of high-performance TFN membranes with enhanced thermal stability for the treatment of wastewaters at high temperatures.
Collapse
Affiliation(s)
- Pooria Karami
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department of Chemical & Materials Engineering, 12-263 Donadeo Innovation Centre for Engineering, Group of Applied Macromolecular Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Behnam Khorshidi
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Laleh Shamaei
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Beaulieu
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - João B P Soares
- Department of Chemical & Materials Engineering, 12-263 Donadeo Innovation Centre for Engineering, Group of Applied Macromolecular Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
34
|
Ang MBMY, Huang SH, Wei SW, Chiao YH, Aquino RR, Hung WS, Tsai HA, Lee KR, Lai JY. Surface Properties, Free Volume, and Performance for Thin-Film Composite Pervaporation Membranes Fabricated through Interfacial Polymerization Involving Different Organic Solvents. Polymers (Basel) 2020; 12:E2326. [PMID: 33053660 PMCID: PMC7601289 DOI: 10.3390/polym12102326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
The type of organic solvents used in interfacial polymerization affects the surface property, free volume, and separation performance of the thin-film composite (TFC) polyamide membrane. In this study, TFC polyamide membrane was fabricated through interfacial polymerization between diethylenetriamine (DETA) and trimesoyl chloride (TMC). Four types of organic solvent were explored in the preparation of pervaporation membrane. These are tetralin, toluene, hexane, and isopentane. The solubility parameter distance between organic solvents and DETA follows in increasing order: tetralin (17.07 MPa1/2) < toluene (17.31 MPa1/2) < hexane (19.86 MPa1/2) < isopentane (20.43 MPa1/2). Same trend was also observed between the organic solvents and DETA. The larger the solubility parameter distance, the denser and thicker the polyamide. Consequently, field emission scanning electron microscope (FESEM) and positron annihilation spectroscopy (PAS) analysis revealed that TFCisopentane had the thickest polyamide layer. It also delivered the highest pervaporation efficiency (permeation flux = 860 ± 71 g m-2 h-1; water concentration in permeate = 99.2 ± 0.8 wt%; pervaporation separation index = 959,760) at dehydration of 90 wt% aqueous ethanol solution. Furthermore, TFCisopentane also exhibited a high separation efficiency in isopropanol and tert-butanol. Therefore, a suitable organic solvent in preparation of TFC membrane through interfacial polymerization enables high pervaporation efficiency.
Collapse
Affiliation(s)
- Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Shi-Wei Wei
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Yu-Hsuan Chiao
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ruth R. Aquino
- General Education Department, Colegio de Muntinlupa, Mayor J. Posadas Avenue, Sucat, Muntinlupa City 1770, Metro Manila, Philippines;
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Wei-Song Hung
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-An Tsai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
35
|
Lim YJ, Lee J, Bae TH, Torres J, Wang R. Feasibility and performance of a thin-film composite seawater reverse osmosis membrane fabricated on a highly porous microstructured support. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118407] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Liu Y, Zhu J, Zheng J, Gao X, Wang J, Wang X, Xie YF, Huang X, Van der Bruggen B. A Facile and Scalable Fabrication Procedure for Thin-Film Composite Membranes: Integration of Phase Inversion and Interfacial Polymerization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1946-1954. [PMID: 31916754 DOI: 10.1021/acs.est.9b06426] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional dense thin-film composite (TFC) membranes evince a universally low water permeability, the increase of which typically relies on introducing additional transport channels based on intricate steps within a membrane preparation process. In this study, we reported a novel and simplified procedure for the fabrication of high-performance TFC membranes. Specifically, the dissolution of aqueous monomers in the casting solution was utilized for the following interfacial polymerization (IP). Since the monomers diffused to the water bath during phase inversion, the control of precipitation time enabled an effective regulation of the monomer concentration in the formed polymeric substrates, where the IP reaction was initiated by the addition of the organic phase. The entire and uniform embedment of aqueous monomers inside the substrates contributed to the formation of ultrathin and smooth selective layers. An excellent separation performance (i.e., water permeability: 34.7 L m-2 h-1 bar-1; Na2SO4 rejection: ∼96%) could be attained using two types of aqueous monomers (i.e., piperazine and β-cyclodextrin), demonstrating the effectiveness and universality of this method. Compared to the conventional immersion-based process, this novel procedure shows distinct advantages in reducing monomer usage, shortening the production cycle, and achieving a more superior membrane performance, which is highly promising for large-scale membrane manufacture.
Collapse
Affiliation(s)
- Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
- Department of Chemical Engineering , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Junyong Zhu
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
- Department of Chemical Engineering , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Junfeng Zheng
- Department of Chemical Engineering , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Xiaoqi Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Jing Wang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Bart Van der Bruggen
- Department of Chemical Engineering , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
- Faculty of Engineering and the Built Environment , Tshwane University of Technology , Private Bag X680, Pretoria 0001 , South Africa
| |
Collapse
|
37
|
Azizi J, Sharif A. Optimization of water flux and salt rejection properties of polyamide thin film composite membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jaber Azizi
- Department of Polymer Reaction Engineering, Faculty of Chemical EngineeringTarbiat Modares University P.O. Box 14155‐143 Tehran Iran
| | - Alireza Sharif
- Department of Polymer Reaction Engineering, Faculty of Chemical EngineeringTarbiat Modares University P.O. Box 14155‐143 Tehran Iran
| |
Collapse
|
38
|
Yang X. Controllable Interfacial Polymerization for Nanofiltration Membrane Performance Improvement by the Polyphenol Interlayer. ACS OMEGA 2019; 4:13824-13833. [PMID: 31497699 PMCID: PMC6714529 DOI: 10.1021/acsomega.9b01446] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/01/2019] [Indexed: 05/31/2023]
Abstract
It is a huge challenge to have a controllable interfacial polymerization in the fabrication process of nanofiltration (NF) membranes. In this work, a polyphenol interlayer consisting of polyethyleneimine (PEI)/tannic acid (TA) was simply assembled on the polysulfone (PSf) substrate to fine-tune the interfacial polymerization process, without additional changes to the typical NF membrane fabrication procedures. In addition, three decisive factors in the interfacial polymerization process were examined, including the diffusion kinetics of fluorescence-labeled piperazine (FITC-PIP), the spreading behavior of the hexane solution containing acyl chloride, and the polyamide layer formation on the porous substrate by in situ Fourier transform infrared (FT-IR) spectroscopy. The experimental results demonstrate that the diffusion kinetics of FITC-PIP is greatly reduced, and the spreading behavior of the hexane solution is also impeded to some extent. Furthermore, in situ FT-IR spectroscopy demonstrates that by the mitigation of this PEI/TA interlayer, the interfacial polymerization process is greatly controlled. Moreover, the as-prepared NF membrane exhibits an increased water permeation flux of 65 L m-2 h-1 (at the operation pressure of 0.6 MPa), high Na2SO4 rejection of >99%, and excellent long-term structural stability.
Collapse
|