1
|
Niccolai F, Guazzelli E, Cesari A, El Koura Z, Pucher I, Galli G, Martinelli E. Sulfonated Styrene-Grafted Polyvinylidene Fluoride Copolymers for Proton Exchange Membranes for AQDS/Bromine Redox Flow Batteries. Macromol Rapid Commun 2025; 46:e2400852. [PMID: 39731351 PMCID: PMC11884226 DOI: 10.1002/marc.202400852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Indexed: 12/29/2024]
Abstract
This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.e., degree of sulfonation (DS)) are obtained and used for the preparation of PEMs by solution casting. The PEMs are characterized to assess their thermal, mechanical, water absorption, and ion exchange properties, to evaluate the effect of DS on membrane properties, and to select the membrane with the best overall performance for application in single cell tests. Electrochemical testing reveals that the pVDF-g-(Sty26-co-SSty14) membrane exhibits low crossover of redox species, favorable ohmic resistance, and energy efficiency. Results from single cell tests, as compared with commercial benchmarks such as Nafion 115 and Aquivion E87-12s, highlight the potential of such copolymers as alternative membranes for RFBs.
Collapse
Affiliation(s)
- Francesca Niccolai
- Department of Chemistry and Industrial ChemistryUniversity of PisaPisa56124Italy
- Green Energy Storage (GES)PovoTrento38123Italy
| | - Elisa Guazzelli
- Department of Chemistry and Industrial ChemistryUniversity of PisaPisa56124Italy
| | - Andrea Cesari
- Department of Chemistry and Industrial ChemistryUniversity of PisaPisa56124Italy
| | | | | | - Giancarlo Galli
- Department of Chemistry and Industrial ChemistryUniversity of PisaPisa56124Italy
| | - Elisa Martinelli
- Department of Chemistry and Industrial ChemistryUniversity of PisaPisa56124Italy
| |
Collapse
|
2
|
Wang G, Jing Y, Yu Y, Wei S, Li X, Zhang S, Zuo C, Chen J, Zhou Y, Zhang J, Chen J, Wang R. A High-Performance Polyimide Composite Membrane with Flexible Polyphosphazene Derivatives for Vanadium Redox Flow Battery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64020-64030. [PMID: 39513755 DOI: 10.1021/acsami.4c13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A sulfonated polyimide, S-F-abSPI, with alkyl sulfonic acid side chains, and a polyphosphonitrile derivative, poly[4-methoxyphenoxy (4-fluorophenoxy) phosphazene] (PFMPP), were designed and synthesized. Composite modification of the S-F-abSPI membrane was carried out using PFMPP, resulting in the preparation of composite membranes with different composite ratios, which were then subjected to performance testing and characterization. Experimental results revealed a significant enhancement in the proton conductivity of the S-F-abSPI membrane, reaching 0.116 S cm-1, slightly higher than that of the N212 membrane. The S-F-abSPI/1% PFMPP composite membrane exhibited the optimal comprehensive performance, with a surface resistance as low as 0.54 Ω cm2, comparable to that of the N212 membrane. At a high current density of 200 mA cm-2 during charge-discharge, the composite membrane achieved a voltage efficiency (VE) of 83.12% and an energy efficiency (EE) of 81.95%. Cycling tests over 200 cycles demonstrated the composite membrane's excellent long-term cycling stability. The alkyl sulfonic acid side chains enhanced the proton conductivity of the membrane, while electrostatic potential distribution calculations indicated strong interactions between PFMPP and the base membrane, enhancing the membrane's mechanical strength, reducing vanadium ion permeability, and improving chemical stability and vanadium ion selectivity. This composite membrane holds promise for high-performance VRFB applications.
Collapse
Affiliation(s)
- Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangtian Jing
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shiguo Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xuesong Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shuwen Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | | | - Jijun Chen
- Sichuan Weilide Energy Co., Ltd., Leshan 614000, China
| | - Yufeng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Rizzuti A, Dilonardo E, Cozzolino G, Matera F, Carbone A, Musio B, Mastrorilli P. Optimized Sulfonated Poly(Ether Ether Ketone) Membranes for In-House Produced Small-Sized Vanadium Redox Flow Battery Set-Up. MEMBRANES 2024; 14:176. [PMID: 39195428 DOI: 10.3390/membranes14080176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of membrane physicochemical features and electrolyte composition, as a way to translate such conditions into a large-scale five-cell VRFB stack system. The effects of the sulfonation degree (SD) and the presence of a filler on the performances of sulfonated poly(ether ether ketone) (SPEEK) ion-selective membranes were investigated, using the commercial perfluorosulfonic-acid Nafion 115 membrane as a reference. Furthermore, the effect of a chloride-based electrolyte was evaluated by comparing it to the commonly used standard sulfuric acid electrolyte. Among the investigated membranes, the readily available SPEEK50-0 (SD = 50%; filler = 0%) resulted in it being permeable and selective to vanadium. Improved coulombic efficiency (93.4%) compared to that of Nafion 115 (88.9%) was achieved when SPEEK50-0, in combination with an optimized chloride-based electrolyte, was employed in a single-cell VRFB at a current density of 20 mA·cm-2. The optimized conditions were successfully applied for the construction of a five-cell VRFB stack system, exhibiting a satisfactory coulombic efficiency of 94.5%.
Collapse
Affiliation(s)
- Antonino Rizzuti
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, BA, Italy
| | - Elena Dilonardo
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, BA, Italy
- Institute of Nanotechnology, CNR-NANOTEC, Via G. Amendola, 122, 70125 Bari, BA, Italy
| | | | - Fabio Matera
- Institute of Microelectronics and Microsystems, CNR-IMM, Catania HQ, VIII Strada n. 5, 95100 Catania, CT, Italy
| | - Alessandra Carbone
- Institute for Advanced Energy Technologies, CNR-ITAE, Salita S. Lucia Sopra Contesse 5, 98126 Messina, ME, Italy
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, BA, Italy
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, BA, Italy
| |
Collapse
|
4
|
Swaby S, Monzón D, Ureña N, Vivo Vilches J, Sanchez JY, Iojoiu C, Várez A, Pérez-Prior MT, Levenfeld B. Block Copolymer-Based Membranes for Vanadium Redox Flow Batteries: Synthesis, Characterization, and Performance. ACS APPLIED POLYMER MATERIALS 2024; 6:8966-8976. [PMID: 39144278 PMCID: PMC11320381 DOI: 10.1021/acsapm.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 08/16/2024]
Abstract
Nonfluorinated polymers have been widely proposed to replace Nafion as raw materials for redox flow battery ion-exchange membranes. Hereby, block copolymers based on polysulfone (PSU) and polyphenylsulfone (PPSU) are synthesized and employed as precursors of membranes for vanadium redox flow batteries. A series of copolymers with varying molar proportions of PSU (75/25, 60/40, 50/50 mol %) were prepared. The 60/40 and 75/25 copolymers exhibit concentrated sulfonic groups predominantly in the PSU unit, favoring the formation of hydrophobic and hydrophilic domains. The 50/50 copolymer presents a balanced degree of sulfonation between the two units, leading to a homogeneous distribution of sulfonic groups. An ex situ study of these materials comprising vanadium ion permeability and chemical and mechanical stability was performed. The best performance is achieved with 50/50 membranes, which exhibited performance comparable to commercial Nafion membranes. These results signify a promising breakthrough in the pursuit of high-performance, sustainable membranes for next-generation VRFBs.
Collapse
Affiliation(s)
- Sydonne Swaby
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Diego Monzón
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Nieves Ureña
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - José Vivo Vilches
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Jean-Yves Sanchez
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
- LEPMI, University Grenoble Alpes, 38000 Grenoble, France
- CNRS,
LEPMI, 38000 Grenoble, France
| | - Cristina Iojoiu
- LEPMI, University Grenoble Alpes, 38000 Grenoble, France
- CNRS,
LEPMI, 38000 Grenoble, France
| | - Alejandro Várez
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - María Teresa Pérez-Prior
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Belén Levenfeld
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
5
|
Ye J, Xia L, Li H, de Arquer FPG, Wang H. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402090. [PMID: 38776138 DOI: 10.1002/adma.202402090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Vanadium redox flow batteries (VRFB) are a promising technology for large-scale storage of electrical energy, combining safety, high capacity, ease of scalability, and prolonged durability; features which have triggered their early commercial implementation. Furthering the deployment of VRFB technologies requires addressing challenges associated to a pivotal component: the membrane. Examples include vanadium crossover, insufficient conductivity, escalated costs, and sustainability concerns related to the widespread adoption of perfluoroalkyl-based membranes, e.g., perfluorosulfonic acid (PFSA). Herein, recent advances in high-performance and sustainable membranes for VRFB, offering insights into prospective research directions to overcome these challenges, are reviewed. The analysis reveals the disparities and trade-offs between performance advances enabled by PFSA membranes and composites, and the lack of sustainability in their final applications. The potential of PFSA-free membranes and present strategies to enhance their performance are discussed. This study delves into vital membrane parameters to enhance battery performance, suggesting protocols and design strategies to achieve high-performance and sustainable VRFB membranes.
Collapse
Affiliation(s)
- Jiaye Ye
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Huiyun Li
- Center for Automotive Electronics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
6
|
Chen Q, Hao J, Zhang S, Tian Z, Davey K, Qiao SZ. High-Reversibility Sulfur Anode for Advanced Aqueous Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309038. [PMID: 37970742 DOI: 10.1002/adma.202309038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Despite being extensively explored as cathodes in batteries, sulfur (S) can function as a low-potential anode by changing charge carriers in electrolytes. Here, a highly reversible S anode that fully converts from S8 0 to S2- in static aqueous S-I2 batteries by using Na+ as the charge carrier is reported. This S anode exhibits a low potential of -0.5 V (vs standard hydrogen electrode) and a near-to-theoretical capacity of 1404 mA h g-1 . Importantly, it shows significant advantages over the widely used Zn anode in aqueous media by obviating dendrite formation and H2 evolution. To suppress "shuttle effects" faced by both S and I2 electrodes, a scalable sulfonated polysulfone (SPSF) membrane is proposed, which is superior to commercial Nafion in cost (US$1.82 m-2 vs $3500 m-2 ) and environmental benignity. Because of its ultra-high selectivity in blocking polysulfides/iodides, the battery with SPSF displays excellent cycling stability. Even under 100% depth of discharge, the battery demonstrates high capacity retention of 87.6% over 500 cycles, outperforming Zn-I2 batteries with 3.1% capacity under the same conditions. These findings broaden anode options beyond metals for high-energy, low-cost, and fast-chargeable batteries.
Collapse
Affiliation(s)
- Qianru Chen
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junnan Hao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shaojian Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zhihao Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
7
|
Zhang K, Lin R, Yan M, Wu Y. Click-chemistry synergic MXene-functionalized flexible skeleton membranes for accurate recognition and separation. J Colloid Interface Sci 2023; 652:2005-2016. [PMID: 37690308 DOI: 10.1016/j.jcis.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Membrane-based technology with accurate-recognition and specific-transmission has been regarded as one of the most promising strategies in environmental protection and energy conservation. However, membrane technique still faces challenges of "trade-off effect" between high selectivity and permeation flux within organic-aqueous mixed matrix. Here, well-intergrown click-chemistry synergic MXene-functionalized flexible skeleton membranes has been prepared in this strategy, enabling size-exclusion&structure selectivity by uniform location array imprinting unit and transport performance towards specific medicinal molecules of artemisinin (Ars). The well-assembled ultrathin cascade-type MXene layer guarantees the narrow interlayer nanochannels and the flexible skeleton modified mesoporous SiO2 nanoparticles provide active reaction platform for the construction of selective recognition space. The resulting membranes demonstrated outstanding selective separation performance with permeability factor that artesunate (Aru) /Ars and dihydro-artemisinin (d-Ars) / Ars of 3.17 and 2.89 and permeation flux of 1173.25 L·m-2·h-1·bar-1. Besides, combined with antibacterial durability, recycling performance, high separation performance in mobile phase stability of CMFMs, it is anticipated that this work hopefully opens a new avenue for efficient chiral separation to medicinal molecules, exhibiting broad potential for practical application.
Collapse
Affiliation(s)
- Kaicheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongxin Lin
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ming Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Advancements in Polyelectrolyte Membrane Designs for Vanadium Redox Flow Battery (VRFB). RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
9
|
Ban T, Guo M, Wang Y, Zhang Y, Zhu X. High-performance aromatic proton exchange membranes bearing multiple flexible pendant sulfonate groups: Exploring side chain length and main chain polarity. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Jiang S, Wang H, Li L, Zhao C, Sheng J, Shi H. Improvement of proton conductivity and efficiency of SPEEK-based composite membrane influenced by dual-sulfonated flexible comb-like polymers for vanadium flow battery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Sheng J, Li L, Wang H, Zhang L, Jiang S, Shi H. An ultrahigh conductivity and efficiency of SPEEK-based hybrid proton exchange membrane containing amphoteric GO-VIPS nanofillers for vanadium flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Sulfonated polyimide membrane containing poly [bis (4-aminodiphenyl bissulfonate) phosphoronitrile] flexible chains for vanadium redox flow battery. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Qian P, Li L, Wang H, Sheng J, Zhou Y, Shi H. SPEEK-based composite proton exchange membrane regulated by local semi-interpenetrating network structure for vanadium flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Young Ryu G, Jin An S, Yu S, Jung Kim K, Jae H, Roh D, Seok Chi W. Dual-sulfonated MOF/Polysulfone Composite Membranes Boosting Performance for Proton Exchange Membrane Fuel Cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Photo crosslinked stilbene-containing sulfonated polyimide membranes as proton exchange membranes in fuel cell. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Ultrahigh proton conductive nanofibrous composite membrane with an interpenetrating framework and enhanced acid-base interfacial layers for vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Chen M, Lu J, Gao J, Yu C, Xing W, Dai J, Meng M, Yan Y, Wu Y. Design of self-cleaning molecularly imprinted membrane with antibacterial ability for high-selectively separation of ribavirin. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
He Z, Wang G, Wei S, Li G, Zhang J, Chen J, Wang R. A novel fluorinated acid-base sulfonated polyimide membrane with sulfoalkyl side-chain for vanadium redox flow battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Galdino AL, Oliveira JCA, Magalhaes ML, Lucena SMP, Liu D, Huang T, Zhu L. Prediction of the phenol removal capacity from water by adsorption on activated carbon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:135-143. [PMID: 34280160 DOI: 10.2166/wst.2021.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-performance sulfonated polysulfone (SPSf) mixed-matrix membranes (MMMs) were fabricated via a nonsolvent-induced phase separation (NIPS) method using zeolitic imidazolate frameworks-67 (ZIF-67) as a crosslinker. Acid-base crosslinking occurred between the sulfonic acid groups of SPSf and the tertiary amine groups of the embedded ZIF-67, which improved the dispersion of ZIF-67 and simultaneously improved the membrane strzcture and permselectivity. The dispersion of ZIF-67 in the MMMs and the acid-base crosslinking reaction were verified by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The pore structure analysis of MMMs indicated that filling ZIF-67 into SPSf enhanced the average surface pore sizes, surface porosities and more micropore in cross-sections. The crossflow filtrations showed the MMMs have higher pure water fluxes (57 to 111 L m-2 h-1) than the SPSf membrane (55 L m-2 h-1) but also higher bovine serum albumin (BSA) rejection rate of 93.9-95.8%, a model protein foulant. The MMMs showed a higher water contact angle than the SPSf membrane due to the addition of hydrophobic ZIF-67 and acid-base crosslinking, and also maintained high thermal stability evidenced by the thermogravimetric analysis (TGA) results. At the optimal ZIF-67 concentration of 0.3 wt%, the water flux of the SPSf-Z67-0.3 membrane was 82 L m-2 h-1 with a high BSA rejection rate of 95.3% at 0.1 MPa and better antifouling performance (FRR = 70%).
Collapse
Affiliation(s)
- Ana Luísa Galdino
- Laboratory of Modeling and 3D Visualization, GPSA, Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl 709, Fortaleza, CE, 60455-760, Brazil
| | - José C A Oliveira
- Laboratory of Modeling and 3D Visualization, GPSA, Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl 709, Fortaleza, CE, 60455-760, Brazil
| | - Madson L Magalhaes
- Laboratory of Modeling and 3D Visualization, GPSA, Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl 709, Fortaleza, CE, 60455-760, Brazil
| | - Sebastião M P Lucena
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Di Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Tingting Huang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Lei Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
21
|
Zhang M, Wang G, Li F, He Z, Zhang J, Chen J, Wang R. High conductivity membrane containing polyphosphazene derivatives for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Hybrid proton exchange membrane of sulfonated poly(ether ether ketone) containing polydopamine-coated carbon nanotubes loaded phosphotungstic acid for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Guo D, Zhou X, Zhang Z, Wang F, Jiang F. Robust Ion‐Selective Membrane for Redox Flow Batteries Based on Ultralow Sulfonation Degree Poly(Ether Sulfone). MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dingyu Guo
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xinjie Zhou
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zhuhan Zhang
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Feiran Wang
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Fengjing Jiang
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
24
|
Düerkop D, Widdecke H, Schilde C, Kunz U, Schmiemann A. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review. MEMBRANES 2021; 11:214. [PMID: 33803681 PMCID: PMC8003036 DOI: 10.3390/membranes11030214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995-2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.
Collapse
Affiliation(s)
- Dennis Düerkop
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Hartmut Widdecke
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Carsten Schilde
- Institute of Particle Technology, Braunschweig University of Technology, Volkmaroder Straße 5, 38100 Braunschweig, Germany;
| | - Ulrich Kunz
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany;
| | - Achim Schmiemann
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| |
Collapse
|
25
|
Novel sulfonated polyimide membrane blended with flexible poly[bis(4-methylphenoxy) phosphazene] chains for all vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Chen Y, Zhang S, Liu Q, Jian X. The effect of counter-ion substitution on poly(phthalazinone ether ketone) amphoteric ion exchange membranes for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Kim J, Kim K, Han J, Lee H, Kim H, Kim S, Sung Y, Lee J. End‐group cross‐linked membranes based on highly sulfonated poly(arylene ether sulfone) with vinyl functionalized graphene oxide as a cross‐linker and a filler for proton exchange membrane fuel cell application. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junghwan Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Kihyun Kim
- School of Materials Science and Engineering, Polymer Science and Engineering Gyeongsang National University Jinju South Korea
| | - Jusung Han
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Hyunhee Lee
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Hyejin Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul National University Seoul Republic of Korea
| | - Yung‐Eun Sung
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul National University Seoul Republic of Korea
| | - Jong‐Chan Lee
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| |
Collapse
|
28
|
Sulfonated poly(ether ether ketone)/amine-functionalized graphene oxide hybrid membrane with various chain lengths for vanadium redox flow battery: A comparative study. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118232] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Du Y, Gao L, Hu L, Di M, Yan X, An B, He G. The synergistic effect of protonated imidazole-hydroxyl-quaternary ammonium on improving performances of anion exchange membrane assembled flow batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Zhou X, Xue R, Zhong Y, Zhang Y, Jiang F. Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117614] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Liu B, Zhang Y, Jiang Y, Qian P, Shi H. High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Amphoteric Ion Exchange Membranes Prepared by Preirradiation-Induced Emulsion Graft Copolymerization for Vanadium Redox Flow Battery. Polymers (Basel) 2019; 11:polym11091482. [PMID: 31514302 PMCID: PMC6780299 DOI: 10.3390/polym11091482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 11/25/2022] Open
Abstract
A series of poly(vinylidene difluoride)-based amphoteric ion exchange membranes (AIEMs) were prepared by preirradiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate in an aqueous emulsion media followed by solution casting, sulfonation, and protonation. The effects of absorbed dose and comonomer concentration on grafting yield (GY) were investigated. The highest GY of 44.5% at a low comonomer concentration of 0.9 M could be achieved. FTIR, TGA, and X-ray photoelectron spectroscopy (XPS) confirmed the successful grafting and sulfonation of the as-prepared AIEMs. Properties of the AIEMs such as water uptake, ion exchange capacity (IEC), ionic conductivity, and crossover behavior of VO2+ ions prepared by this novel technique were systematically investigated and compared with those of the commercial Nafion 115 membrane. It was found that at a GY of 28.4%, the AIEMs showed higher IEC and conductivity, lower permeability of VO2+ ions, and a longer time to maintain open circuit voltage than Nafion 115, which was attributed to their high GY and elaborate amphoteric structure. Consequently, this work has paved the way for the development of green and low-cost AIEMs with good performance for vanadium redox flow battery applications.
Collapse
|