1
|
Zhao Z, Liu X, Zhang M, Zhang L, Zhang C, Li X, Yu G. Development of flow battery technologies using the principles of sustainable chemistry. Chem Soc Rev 2023; 52:6031-6074. [PMID: 37539656 DOI: 10.1039/d2cs00765g] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Realizing decarbonization and sustainable energy supply by the integration of variable renewable energies has become an important direction for energy development. Flow batteries (FBs) are currently one of the most promising technologies for large-scale energy storage. This review aims to provide a comprehensive analysis of the state-of-the-art progress in FBs from the new perspectives of technological and environmental sustainability, thus guiding the future development of FB technologies. More importantly, we evaluate the current situation and future development of key materials with key aspects of green economy and decarbonization to promote sustainable development and improve the novel energy framework. Finally, we present an analysis of the current challenges and prospects on how to effectively construct low-carbon and sustainable FB materials in the future.
Collapse
Affiliation(s)
- Ziming Zhao
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Xianghui Liu
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Mengqi Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Changkun Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
2
|
Crosslinked polybenzimidazole high temperature-proton exchange membranes with a polymers of intrinsic microporosity (PIM) macromolecular crosslinker. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Jiao Y, Liu M, Wu Q, Zheng P, Xu W, Ye B, Zhang H, Guo R, Luo S. Finely tuning the microporosity in phosphoric acid doped triptycene-containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Zhao Y, Lv B, Song W, Hao J, Zhang J, Shao Z. Influence of the PBI structure on PBI/CsH5(PO4)2 membrane performance for HT-PEMFC application. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
Highly alkali-stable polyolefin-based anion exchange membrane enabled by N-cyclic quaternary ammoniums for alkaline fuel cells. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Hu X, Liu M, Huang Y, Liu L, Li N. Sulfonate-functionalized polybenzimidazole as ion-solvating membrane toward high-performance alkaline water electrolysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Do XH, Abbas S, Ikhsan MM, Choi SY, Ha HY, Azizi K, Hjuler HA, Henkensmeier D. Membrane Assemblies with Soft Protective Layers: Dense and Gel-Type Polybenzimidazole Membranes and Their Use in Vanadium Redox Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2206284. [PMID: 36319463 DOI: 10.1002/smll.202206284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Polybenzimidazole (PBI) membranes show excellent chemical stability and low vanadium crossover in vanadium redox flow batteries (VRFBs), but their high resistance is challenging. This work introduces a concept, membrane assemblies of a highly selective 2 µm thin PBI membrane between two 60 µm thick highly conductive PBI gel membranes, which act as soft protective layers against external mechanical forces and astray carbon fibers from the electrode. The soft layers are produced by casting phosphoric acid solutions of commercial PBI powder into membranes and exchanging the absorbed acid into sulfuric acid. A conductivity of 565 mS cm-1 is achieved. A stability test indicates that gel mPBI and dense PBI-OO have higher stability than dense mPBI and dense py-PBI, and gel/PBI-OO/gel is successfully tested for 1070 cycles (ca. 1000 h) at 100 mA cm-2 in the VRFB. The initial energy efficiency (EE) for the first 50 cycles is 90.5 ± 0.2%, and after a power outage stabilized at 86.3 ± 0.5% for the following 500 cycles. The initial EE is one of the highest published so far, and the materials cost for a membrane assembly is 12.35 U.S. dollars at a production volume of 5000 m2 , which makes these membranes very attractive for commercialization.
Collapse
Affiliation(s)
- Xuan Huy Do
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Saleem Abbas
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Muhammad Mara Ikhsan
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Seung-Young Choi
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, Lund, 221 00, Sweden
| | - Heung Yong Ha
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Kobra Azizi
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Hans Aage Hjuler
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Dirk Henkensmeier
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| |
Collapse
|
8
|
Zhang B, Fu Y, Liu Q, Li L, Zhang X, Yang Z, Zhang E, Wang K, Wang G, Zhang Z, Zhang S. Swelling-Induced Quaternized Anthrone-Containing Poly(aryl ether ketone) Membranes with Low Area Resistance and High Ion Selectivity for Vanadium Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50858-50869. [PMID: 36331393 DOI: 10.1021/acsami.2c14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A vanadium flow battery (VFB) is one of the most promising electrochemical energy storage technologies. However, membranes for VFBs still suffer from high cost or low conductivity and poor stability. Here, we report new quaternized anthrone-containing poly(aryl ether ketone) (QAnPEK) membranes for VFBs. QAnPEK membranes with moderate ion exchange capacity (1.26 mmol g-1) were swelling-induced in H3PO4 (50 wt %) to form wider ion transport pathways that significantly enhanced membrane conductivity (e.g., 0.49 Ω cm2 for the QAnPEK-virgin membrane and 0.12 Ω cm2 for the swelling-induced QAnPEK-90 membrane). The bulky rigid anthrone-containing backbone provided high swelling resistance and enabled QAnPEK membranes to have high ion selectivity. As a result, QAnPEK membranes displayed low area resistance, high ion selectivity, and robust mechanical strength. The QAnPEK-90 membrane yielded excellent energy efficiencies (92.4% at 80 mA cm-2, 85.1% at 200 mA cm-2, and 80.3% at 280 mA cm-2). Moreover, QAnPEK membranes exhibited outstanding in situ and ex situ stability, for example, the VFB with the QAnPEK-40 membrane demonstrated highly stable battery performance for 3000 cycles at 160 mA cm-2. QAnPEK membranes are attractive candidates for VFB application.
Collapse
Affiliation(s)
- Bengui Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Yanshi Fu
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Qian Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Lu Li
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Xueting Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Zhirong Yang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Enlei Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Kangjun Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Zhigang Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
9
|
Maurya S, Diaz Abad S, Park EJ, Ramaiyan K, Kim YS, Davis BL, Mukundan R. Phosphoric acid pre-treatment to tailor polybenzimidazole membranes for vanadium redox flow batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Polyethersulfone/polyvinylpyrrolidone/boron nitride composite membranes for high proton conductivity and long-term stability high-temperature proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Zhang G, Li R, Wang X, Chen X, Shen Y, Fu Y. The inhibiting water uptake mechanism of main-chain type N-spirocyclic quaternary ammonium ionene blended with polybenzimidazole as anion exchange membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Robust Adamantane-Based Membranes with Enhanced Conductivity for Vanadium Flow Battery Application. Polymers (Basel) 2022; 14:polym14081552. [PMID: 35458299 PMCID: PMC9029318 DOI: 10.3390/polym14081552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Membranes with high conductivity, high selectivity, and high stability are urgently needed for high-power-density vanadium flow batteries (VFBs). Enhancing membrane conductivity presents many challenges, often resulting in sacrificing membrane selectivity and mechanical strength. To overcome this, new robust adamantane-based membranes with enhanced conductivity are constructed for VFB. Low-content basic piperazine (IEC = 0.78 mmol g−1) and hydrophilic hydroxyl groups are introduced into highly rigid, hydrophobic adamantane containing poly(aryl ether ketone) backbone (PAPEK) and then selectively swelled to induce microphase separation and form ion transport pathways. The highly rigid and hydrophobic PAPEK exhibits high swelling resistance and provides the membranes with slight swelling, high selectivity, and high mechanical strength. The selective swelling temperature has a significant influence on the areal resistance of the resulting membrane, e.g., the PAPEK-130 membrane, when selectively swelled at 130 °C, has low areal resistance (0.22 Ω∙cm2), which is approximately two-fifths that of the PAEKK-60 membrane (treated at 60 °C, 0.57 Ω∙cm2). Consequently, the resulting PAPEK membranes exhibit low swelling, high selectivity, and low areal resistance, with the VFB constructed with a PAPEK-90 membrane exhibiting excellent energy efficiency (91.7%, at 80 mA∙cm−2, and 80.0% at 240 mA∙cm−2) and stable cycling performance for 2000 cycles.
Collapse
|
13
|
Enhancement of Proton Conductivity Performance in High Temperature Polymer Electrolyte Membrane, Processed the Adding of Pyridobismidazole. Polymers (Basel) 2022; 14:polym14071283. [PMID: 35406156 PMCID: PMC9003316 DOI: 10.3390/polym14071283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
A pyridobisimidazole unit was introduced into a polymer backbone to obtain an increased doping level, a high number of interacting sites with phosphoric acid and simple processibility. The acid uptake of poly(pyridobisimidazole) (PPI) membrane could reach more than 550% (ADL = 22), resulting in high conductivity (0.23 S·cm−1 at 180 °C). Along with 550% acid uptake, the membrane strength still held 10 MPa, meeting the requirement of Proton Exchange Membrane (PEM). In the Fenton Test, the PPI membrane only lost around 7% weight after 156 h, demonstrating excellent oxidative stability. Besides, PPI possessed thermal stability with decomposition temperature at 570 °C and mechanical stability with a glass transition temperature of 330 °C.
Collapse
|
14
|
Hu B, Huang Y, Liu L, Hu X, Geng K, Ju Q, Liu M, Bi J, Luo S, Li N. A stable ion-solvating PBI electrolyte enabled by sterically bulky naphthalene for alkaline water electrolysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
A Chemistry and Microstructure Perspective on Ion‐Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Wang L, Guo X, Zhang F, Li N. Blending and in situ thermally crosslinking of dual rigid polymers for anti-plasticized gas separation membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Pang CM, Cao XY, Xiao Y, Luo SH, Chen Q, Zhou YJ, Wang ZY. N-alkylation briefly constructs tunable multifunctional sensor materials: Multianalyte detection and reversible adsorption. iScience 2021; 24:103126. [PMID: 34632330 PMCID: PMC8487030 DOI: 10.1016/j.isci.2021.103126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
A series of N-alkyl-substituted polybenzimidazoles (SPBIs), synthesized by simple condensation and N-alkylation, act as functional materials with tunable microstructures and sensing performance. For their controllable morphologies, the formation of nano-/microspheres is observed at the n(RBr)/n(PBI) feed ratio of 5:1. Products with different degrees of alkylation can recognize metal ions and nitroaromatic compounds (NACs). For example, SPBI-c, obtained at the feed ratio of 1:1, can selectively detect Cu2+, Fe3+, and NACs. By contrast, SPBI-a, obtained at the feed ratio of 0.1:1, can exclusively detect Cu2+ with high sensitivity. Their sensing mechanisms have been studied by FT-IR spectroscopy, SEM, XPS, and DFT calculations. Interestingly, the SPBIs can adsorb Cu2+ in solution and show good recyclability. These results demonstrate that polymeric materials with both sensing and adsorption applications can be realized by regulating the alkylation extent of the main chain, thus providing a new approach for the facile synthesis of multifunctional materials.
Collapse
Affiliation(s)
- Chu-Ming Pang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- School of Health Medicine, Guangzhou Huashang College, Guangzhou 511300, P. R. China
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Ying Xiao
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Qi Chen
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Yong-Jun Zhou
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
18
|
Zhao Y, Zhang D, Zhao L, Wang S, Liu J, Yan C. Excellent ion selectivity of Nafion membrane modified by PBI via acid-base pair effect for vanadium flow battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Ozaytekin I. Improving proton conductivity of poly(oxyphenylene benzimidazole) membranes with sulfonation and magnetite addition. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00960-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Charvát J, Mazúr P, Paidar M, Pocedič J, Vrána J, Mrlík J, Kosek J. The role of ion exchange membrane in vanadium oxygen fuel cell. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
The alkaline stability and fuel cell performance of poly(N-spirocyclic quaternary ammonium) ionenes as anion exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Xiong P, Zhang L, Chen Y, Peng S, Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:24770-24798. [PMID: 34165884 DOI: 10.1002/anie.202105619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuyue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
23
|
The effect of –NH− on quaternized polybenzimidazole anion exchange membranes for alkaline fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119178] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Two-dimensional MoS2 nanosheets constructing highly ion-selective composite membrane for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Duburg JC, Azizi K, Primdahl S, Hjuler HA, Zanzola E, Schmidt TJ, Gubler L. Composite Polybenzimidazole Membrane with High Capacity Retention for Vanadium Redox Flow Batteries. Molecules 2021; 26:molecules26061679. [PMID: 33802845 PMCID: PMC8002762 DOI: 10.3390/molecules26061679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, energy storage technologies are becoming essential in the transition of replacing fossil fuels with more renewable electricity production means. Among storage technologies, redox flow batteries (RFBs) can represent a valid option due to their unique characteristic of decoupling energy storage from power output. To push RFBs further into the market, it is essential to include low-cost materials such as new generation membranes with low ohmic resistance, high transport selectivity, and long durability. This work proposes a composite membrane for vanadium RFBs and a method of preparation. The membrane was prepared starting from two polymers, meta-polybenzimidazole (6 μm) and porous polypropylene (30 μm), through a gluing approach by hot-pressing. In a vanadium RFB, the composite membrane exhibited a high energy efficiency (~84%) and discharge capacity (~90%) with a 99% capacity retention over 90 cycles at 120 mA·cm-2, exceeding commercial Nafion® NR212 (~82% efficiency, capacity drop from 90% to 40%) and Fumasep® FAP-450 (~76% efficiency, capacity drop from 80 to 65%).
Collapse
Affiliation(s)
- Jacobus C. Duburg
- Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; (J.C.D.); (T.J.S.); (L.G.)
| | - Kobra Azizi
- Blue World Technologies, Egeskovvej 6C, DK-3490 Kvistgård, Denmark; (K.A.); (S.P.); (H.A.H.)
| | - Søren Primdahl
- Blue World Technologies, Egeskovvej 6C, DK-3490 Kvistgård, Denmark; (K.A.); (S.P.); (H.A.H.)
| | - Hans Aage Hjuler
- Blue World Technologies, Egeskovvej 6C, DK-3490 Kvistgård, Denmark; (K.A.); (S.P.); (H.A.H.)
- Danish Center for Energy Storage, Frederiksholms Kanal 30, DK-1220 Copenhagen K, Denmark
| | - Elena Zanzola
- Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; (J.C.D.); (T.J.S.); (L.G.)
- Correspondence: ; Tel.: +41-56-310-4738
| | - Thomas J. Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; (J.C.D.); (T.J.S.); (L.G.)
- Laboratory for Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Lorenz Gubler
- Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; (J.C.D.); (T.J.S.); (L.G.)
| |
Collapse
|
26
|
Symmetric sponge-like porous polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Lu W, Shi D, Zhang H, Li X. Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Zhang D, Xu Z, Zhang X, Zhao L, Zhao Y, Wang S, Liu W, Che X, Yang J, Liu J, Yan C. Oriented Proton-Conductive Nanochannels Boosting a Highly Conductive Proton-Exchange Membrane for a Vanadium Redox Flow Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4051-4061. [PMID: 33434002 DOI: 10.1021/acsami.0c20847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we propose a sulfonated poly (ether ether ketone) (SPEEK) composite proton-conductive membrane based on a 3-(1-hydro-imidazolium-3-yl)-propane-1-sulfonate (Him-pS) additive to break through the trade-off between conductivity and selectivity of a vanadium redox flow battery (VRFB). Specifically, Him-pS enables an oriented distribution of the SPEEK matrix to construct highly conductive proton nanochannels throughout the membrane arising from the noncovalent interaction. Moreover, the "acid-base pair" effect from an imidazolium group and a sulfonic group further facilitates the proton transport through the nanochannels. Meanwhile, the structure of the acid-base pair is further confirmed based on density functional theory calculations. Material and electrochemical characterizations indicate that the nanochannels with a size of 16.5 nm are vertically distributed across the membrane, which not only accelerate proton conductivity (31.54 mS cm-1) but also enhance the vanadium-ion selectivity (39.9 × 103 S min cm-3). Benefiting from such oriented proton-conductive nanochannels in the membrane, the cell delivers an excellent Coulombic efficiency (CE, ≈ 98.8%) and energy efficiency (EE, ≈ 78.5%) at 300 mA cm-2. More significantly, the cell maintains a stable energy efficiency over 600 charge-discharge cycles with only a 5.18% decay. Accordingly, this work provides a promising fabrication strategy for a high-performance membrane of VRFB.
Collapse
Affiliation(s)
- Denghua Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zeyu Xu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Xihao Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Lina Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yingying Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shaoliang Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Weihua Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuefu Che
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jingshuai Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianguo Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chuanwei Yan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
29
|
Wan L, Xu Z, Wang P, Lin Y, Wang B. H2SO4-doped polybenzimidazole membranes for hydrogen production with acid-alkaline amphoteric water electrolysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118642] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Che X, Zhao H, Ren X, Zhang D, Wei H, Liu J, Zhang X, Yang J. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118359] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Geng K, Tang H, Li Y, Liu L, Li N. A facile strategy for disentangling the conductivity and selectivity dilemma enables advanced composite membrane for vanadium flow batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Du Y, Gao L, Hu L, Di M, Yan X, An B, He G. The synergistic effect of protonated imidazole-hydroxyl-quaternary ammonium on improving performances of anion exchange membrane assembled flow batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|