1
|
Wu S, Peng LE, Yang Z, Sarkar P, Barboiu M, Tang CY, Fane AG. Next-Generation Desalination Membranes Empowered by Novel Materials: Where Are We Now? NANO-MICRO LETTERS 2024; 17:91. [PMID: 39702561 DOI: 10.1007/s40820-024-01606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity. However, state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materials as a result of ongoing technological advancements. These novel materials possess intrinsic pore structures or can be assembled to form lamellar membrane channels for selective transport of water or solutes (e.g., NaCl). Still, in real applications, the results fall below the theoretical predictions, and a few properties, including large-scale fabrication, mechanical strength, and chemical stability, also have an impact on the overall effectiveness of those materials. In view of this, we develop a new evaluation framework in the form of radar charts with five dimensions (i.e., water permeance, water/NaCl selectivity, membrane cost, scale of development, and stability) to assess the advantages, disadvantages, and potential of state-of-the-art and newly developed desalination membranes. In this framework, the reported thin film nanocomposite membranes and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes. This review will demonstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes. In this review, we also point out the prospects and challenges of next-generation membranes for desalination applications. We believe that this comprehensive framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and development in the field of membrane technology, leading to new insights and advancements.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Mihail Barboiu
- Institut Européen des Membrane, University of Montpellier, ENSCM, CNRS UMR5635, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| | - Anthony G Fane
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Babu A, Dilwale S, Kurungot S. Interlayer Space Engineering-Induced Pseudocapacitive Zinc-Ion Storage in Holey Graphene Oxide-Bearing Vertically Oriented MoS 2 Nano-Wall Array Cathode for Aqueous Rechargeable Zn Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406926. [PMID: 39344215 DOI: 10.1002/smll.202406926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Transition metal dichalcogenides, particularly MoS2, are acknowledged as a promising cathode material for aqueous rechargeable zinc metal batteries (ARZMBs). Nevertheless, its lack of hydrophilicity, poor electrical conductivity, significant restacking, and restricted interlayer spacing translate into inadequate capacity and rate performance. Herein, the unique porous structure and additional functional groups present in holey graphene oxide (hGO) are taken advantage of to dictate the vertical growth pattern of oxygen-doped MoS2 nanowalls (O-MoS2/NW) over the hGO surface. Compared to conventional graphene oxide (GO), the presence of nano-pores in hGO facilitates the homogeneous dispersion of Mo precursors and provides stronger interaction sites, promoting the uniform vertical alignment of O-MoS2/NW. The synergistic interaction between O-MoS2-NW and hGO translates to enhanced electron conductivity, efficient electrolyte penetration, enhanced interlayer spacing, reduced restacking, and enhanced surface area. As a consequence of precise control of various factors that decide the overall battery performance, a high discharge capacity (227 mAh g-1 at 100 mA g-1) cathode material with significantly lower charge transfer resistance (66 Ω) compared to pristine O-MoS2 (153 Ω) is developed. These findings underscore the potential of hGO as a multifunctional platform for nanoengineering high-performance cathode materials for the next generation of efficient and durable ARZMBs.
Collapse
Affiliation(s)
- Athira Babu
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Swati Dilwale
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sreekumar Kurungot
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
3
|
Tandel AM, Agarwal M, Deng E, Zhu L, Friedman K, Yu M, Cheng C, Lin H. Scalable Graphene Oxide Hollow Fiber Membranes for Dye Desalination Enabled by Multi-Purpose Polyamine Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403620. [PMID: 39221703 DOI: 10.1002/smll.202403620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/09/2024] [Indexed: 09/04/2024]
Abstract
2D nanosheets such as graphene oxide (GO) can be stacked to construct membranes with fine-tuned nanochannels to achieve molecular sieving ability. These membranes are often thin to achieve high water permeance, but their fabrication with consistent nanostructures on a large scale presents an enormous challenge. Herein, GO-based hollow fiber membranes (HFMs) are developed for dye desalination by synergistically combining chemical etching to form in-plane nanopores (10-30 nm) to increase water permeance and polyamine functionalization to improve underwater stability and enable facile large-scale production using existing membrane manufacturing processes. HFM modules with areas of 88 cm2 and GO layer thicknesses of ≈500 nm are fabricated, and they exhibited a stable dye water permeance of 75 L m-2 h-1 bar-1, rejection of >99.5% for Direct red and Congo red, and Na2SO4/dye separation factor of 300-500, superior to state-of-the-art commercial membranes. The versatility of this approach is also demonstrated using different short polyamines and porous substrates. This study reveals a scalable way of designing 2D materials into high-performance robust membranes for practical applications.
Collapse
Affiliation(s)
- Ameya Manoj Tandel
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Manas Agarwal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Lingxiang Zhu
- Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA, 15236, USA
| | - Kaleb Friedman
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Miao Yu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
4
|
Moriyama N, Takenaka R, Nagasawa H, Kanezashi M, Tsuru T. Physicochemical Treatments of Graphene Oxide to Improve Water Vapor/Gas Separation Performance of Supported Laminar Membranes: Sonication and H 2O 2 Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8086-8097. [PMID: 38301232 DOI: 10.1021/acsami.3c16844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
We investigated the previously unexplored domain of water vapor/gas separation using graphene oxide (GO) membranes, expecting future applications, including gas dehumidifiers and superior humidity controllers. While the importance of manipulation of GO nanosheet size and surface chemistry in traditional water purification and gas separation has been acknowledged, their potential impact on water vapor/gas separation remained unexplored until now. We applied sonication and hydrogen peroxide treatments to GO water dispersions and systematically evaluated the size and surface chemistry of each GO nanosheet. Both treatments reduced the GO nanosheet size to shorten the diffusion length, which improved water permeance. In addition, hydrogen peroxide treatment improved the hydrophilicity of the nanosheet. Our novel findings demonstrate that optimization of GO nanosheet size and the increase in their hydrophilicity via hydrogen peroxide treatments for 5 h significantly enhance water permeance, leading to a remarkable water vapor permeance of 4.6 × 10-6 mol/(m2 s Pa) at 80 °C, a 3.1-fold improvement over original GO membranes, while maintaining a water vapor/nitrogen permeance ratio exceeding 10,000. These results not only provide important insights into the nature of water vapor/gas separation but also suggest innovative methods for optimizing the GO membrane structure.
Collapse
Affiliation(s)
- Norihiro Moriyama
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Risa Takenaka
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroki Nagasawa
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Masakoto Kanezashi
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Toshinori Tsuru
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
5
|
Liu H, Huang X, Wang Y, Kuang B, Li W. Nanowire-assisted electrochemical perforation of graphene oxide nanosheets for molecular separation. Nat Commun 2024; 15:164. [PMID: 38167389 PMCID: PMC10762124 DOI: 10.1038/s41467-023-44626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Two-dimensional nanosheets, e.g., graphene oxide (GO), have been widely used to fabricate efficient membranes for molecular separation. However, because of poor transport across nanosheets and high width-to-thickness ratio, the permeation pathway length and tortuosity of these membranes are extremely large, which limit their separation performance. Here we report a facile, scalable, and controllable nanowire electrochemical concept for perforating and modifying nanosheets to shorten permeation pathway and adjust transport property. It is found that confinement effects with locally enhanced charge density, electric field, and hydroxyl radical generation over nanowire tips on anode can be executed under low voltage, thereby inducing confined direct electron loss and indirect oxidation to reform configuration and composition of GO nanosheets. We demonstrate that the porous GO nanosheets with a lot of holes are suitable for assembling separation membranes with tuned accessibility, tortuosity, interlayer space, electronegativity, and hydrophilicity. For molecular separation, the prepared membranes exhibit quadruple water permeance and higher rejections for salts (>91%) and small molecules (>96%) as/than original ones. This nanowire electrochemical perforation concept offers a feasible strategy to reconstruct two-dimensional materials and tune their transport property for separation.
Collapse
Affiliation(s)
- Hai Liu
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xinxi Huang
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yang Wang
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Baian Kuang
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Wanbin Li
- School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
6
|
Sohail Ahmad M, Inomata Y, Kida T. Energy Application of Graphene Based Membrane: Hydrogen Separation. CHEM REC 2024; 24:e202300163. [PMID: 37489627 DOI: 10.1002/tcr.202300163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Indexed: 07/26/2023]
Abstract
Hydrogen gas (H2 ) is a viable energy carrier that has the potential to replace the traditional fossil fuels and contribute to achieving zero net emissions, making it an attractive option for a hydrogen-based society. However, current H2 purification technologies are often limited by high energy consumption, and as a result, there is a growing demand for alternative techniques that offer higher H2 purity and energy efficiency. Membrane separation has emerged as a promising approach for obtaining high-purity H2 gas with low energy consumption. Nevertheless, despite years of development, commercial polymeric membranes have limited performance, prompting researchers to explore alternative materials. In this context, carbon-based membranes, specifically graphene-based nanomaterials, have gained significant attention as potential membrane materials due to their unique properties. In this review, we provide a comprehensive overview of carbon-based membranes for H2 gas separation, fabrication of the membrane, and its characterization, including their advantages and limitations. We also explore the current technological challenges and suggest insights into future research directions, highlighting potential ways to improve graphene-based membranes performance for H2 separations.
Collapse
Affiliation(s)
- Muhammad Sohail Ahmad
- 2D nanomaterials Division, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yusuke Inomata
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Department of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Tetsuya Kida
- 2D nanomaterials Division, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Department of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
7
|
Shaharudin MR, Williams CD, Achari A, Nair RR, Carbone P. Decoding the Interplay between Topology and Surface Charge in Graphene Oxide Membranes During Humidity Induced Swelling. ACS NANO 2023; 17:21923-21934. [PMID: 37917940 PMCID: PMC10655246 DOI: 10.1021/acsnano.3c08260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Graphene oxide (GO) membranes are known to have a complex morphology that depends on the degree of oxidation of the graphene flake and the membrane preparation technique. In this study, using Grand Canonical Monte Carlo simulations, we investigate the mechanism of swelling of GO membranes exposed to different relative humidity (RH) values and show how this is intimately related to the graphene surface chemistry. We show that the structure of the GO membrane changes while the membrane adsorbs water from the environment and that graphene oxide flakes become charged as the membrane is loaded with water and swells. A detailed comparison between simulation and experimental adsorption data reveals that the flake surface charge drives the water adsorption mechanism at low RH when the membrane topology is still disordered and the internal pores are small and asymmetric. As the membrane is exposed to higher RH (80%), the flake acquires more surface charge as more oxide groups deprotonate, and the pores grow in size, yet maintain their disordered geometry. Only for very high relative humidity (98%) does the membrane undergo structural changes. At this level of humidity, the pores in the membrane become slit-like but the flake surface charge remains constant. Our results unveil a very complex mechanism of swelling and show that a single molecular model cannot fully capture the ever-changing chemistry and morphology of the membrane as it swells. Our computational procedure provides the first atomically resolved insight into the GO membrane structure of experimental samples.
Collapse
Affiliation(s)
- Mohd Rafie
bin Shaharudin
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
| | - Christopher D. Williams
- Division
of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Oxford Road, M13 9PT Manchester, United Kingdom
| | - Amritroop Achari
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
- National
Graphene Institute, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
| | - Rahul R. Nair
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
- National
Graphene Institute, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
| | - Paola Carbone
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
| |
Collapse
|
8
|
Takenaka R, Moriyama N, Nagasawa H, Kanezashi M, Tsuru T. Permeation Properties of Water Vapor through Graphene Oxide/Polymer Substrate Composite Membranes. MEMBRANES 2023; 13:membranes13050533. [PMID: 37233594 DOI: 10.3390/membranes13050533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Graphene oxide (GO) has attracted attention as an excellent membrane material for water treatment and desalination owing to its high mechanical strength, hydrophilicity, and permeability. In this study, composite membranes were prepared by coating GO on various polymeric porous substrates (polyethersulfone, cellulose ester, and polytetrafluoroethylene) using suction filtration and casting methods. The composite membranes were used for dehumidification, that is, water vapor separation in the gas phase. GO layers were successfully prepared via filtration rather than casting, irrespective of the type of polymeric substrate used. The dehumidification composite membranes with a GO layer thickness of less than 100 nm showed a water permeance greater than 1.0 × 10-6 mol/(m2 s Pa) and a H2O/N2 separation factor higher than 104 at 25 °C and 90-100% humidity. The GO composite membranes were fabricated in a reproducible manner and showed stable performance as a function of time. Furthermore, the membranes maintained high permeance and selectivity at 80°C, indicating that it is useful as a water vapor separation membrane.
Collapse
Affiliation(s)
- Risa Takenaka
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Norihiro Moriyama
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroki Nagasawa
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Masakoto Kanezashi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Toshinori Tsuru
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
9
|
From nanohole to ultralong straight nanochannel fabrication in graphene oxide with swift heavy ions. Nat Commun 2023; 14:889. [PMID: 36797230 PMCID: PMC9935919 DOI: 10.1038/s41467-023-36357-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Porous architectures based on graphene oxide with precisely tailored nm-sized pores are attractive for biofluidic applications such as molecular sieving, DNA sequencing, and recognition-based sensing. However, the existing pore fabrication methods are complex, suffer from insufficient control over the pore density and uniformity, or are not scalable to large areas. Notably, creating vertical pores in multilayer films appears to be particularly difficult. Here, we show that uniform 6-7 nm-sized holes and straight, vertical nanochannels can be formed by simply irradiating graphene oxide (GO) films with high-energy heavy ions. Long penetration depths of energetic ions in combination with localized energy deposition and effective self-etching processes enable the creation of through pores even in 10 µm-thick GO films. This fully scalable fabrication provides a promising possibility for obtaining innovative GO track membranes.
Collapse
|
10
|
Tian L, Graham N, Tian X, Liu T, Yu W. Fenton induced microdefects enable fast water transfer of graphene oxide membrane for efficient water purification. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
11
|
Yu Y, Zhang X, Lu P, He D, Shen L, Li Y. Enhanced Separation Performance of Polyamide Thin-Film Nanocomposite Membranes with Interlayer by Constructed Two-Dimensional Nanomaterials: A Critical Review. MEMBRANES 2022; 12:1250. [PMID: 36557157 PMCID: PMC9784344 DOI: 10.3390/membranes12121250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 05/31/2023]
Abstract
Thin-film composite (TFC) polyamide (PA) membrane has been widely applied in nanofiltration, reverse osmosis, and forward osmosis, including a PA rejection layer by interfacial polymerization on a porous support layer. However, the separation performance of TFC membrane is constrained by the trade-off relationship between permeability and selectivity. Although thin-film nanocomposite (TFN) membrane can enhance the permeability, due to the existence of functionalized nanoparticles in the PA rejection layer, the introduction of nanoparticles leads to the problems of the poor interface compatibility and the nanoparticles agglomeration. These issues often lead to the defect of PA rejection layers and reduction in selectivity. In this review, we summarize a new class of structures of TFN membranes with functionalized interlayers (TFNi), which promises to overcome the problems associated with TFN membranes. Recently, functionalized two-dimensional (2D) nanomaterials have received more attention in the assembly materials of membranes. The reported TFNi membranes with 2D interlayers exhibit the remarkable enhancement on the permeability, due to the shorter transport path by the "gutter mechanism" of 2D interlayers. Meanwhile, the functionalized 2D interlayers can affect the diffusion of two-phase monomers during the interfacial polymerization, resulting in the defect-free and highly crosslinked PA rejection layer. Thus, the 2D interlayers enabled TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. This paper provides a critical review on the emerging 2D nanomaterials as the functionalized interlayers of TFNi membranes. The characteristics, function, modification, and advantages of these 2D interlayers are summarized. Several perspectives are provided in terms of the critical challenges for 2D interlayers, managing the trade-off between permeability, selectivity, and cost. The future research directions of TFNi membranes with 2D interlayers are proposed.
Collapse
Affiliation(s)
- Yifei Yu
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Xianjuan Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Peng Lu
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Dingbin He
- Hymater Co., Ltd., 777 Qingfeng Road, Ningbo 315000, China
| | - Liqiang Shen
- Ningbo Shuiyi Membrane Technology Development Co., Ltd., 368 Xingci One Road, Ningbo 315336, China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
12
|
Porous graphene oxide surface-coated thin-film composite membrane for simultaneously increasing permeation performance and organic-fouling migration capacities. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Foller T, Madauß L, Ji D, Ren X, De Silva KKH, Musso T, Yoshimura M, Lebius H, Benyagoub A, Kumar PV, Schleberger M, Joshi R. Mass Transport via In-Plane Nanopores in Graphene Oxide Membranes. NANO LETTERS 2022; 22:4941-4948. [PMID: 35687040 DOI: 10.1021/acs.nanolett.2c01615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Angstrom-confined solvents in 2D laminates can travel through interlayer spacings, through gaps between adjacent sheets, and via in-plane pores. Among these, experimental access to investigate the mass transport through in-plane pores is lacking. Our experiments allow an understanding of this mass transport via the controlled variation of oxygen functionalities, size and density of in-plane pores in graphene oxide membranes. Contrary to expectations, our transport experiments show that higher in-plane pore densities may not necessarily lead to higher water permeability. We observed that membranes with a high in-plane pore density but a low amount of oxygen functionalities exhibit a complete blockage of water. However, when water-ethanol mixtures with a weaker hydrogen network are used, these membranes show an enhanced permeation. Our combined experimental and computational results suggest that the transport mechanism is governed by the attraction of the solvents toward the pores with functional groups and hindered by the strong hydrogen network of water formed under angstrom confinement.
Collapse
Affiliation(s)
- Tobias Foller
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lukas Madauß
- Faculty for Physics and CENIDE, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Dali Ji
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiaojun Ren
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | - Tiziana Musso
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Masamichi Yoshimura
- Surface Science Laboratory, Toyota Technological Institute, Nagoya 468-8511, Japan
| | - Henning Lebius
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14032 Caen, France
| | - Abdenacer Benyagoub
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14032 Caen, France
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marika Schleberger
- Faculty for Physics and CENIDE, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Meta-analysis of electrically conductive membranes: A comparative review of their materials, applications, and performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Tian L, Graham N, Liu T, Sun K, Yu W. Dual-site supported graphene oxide membrane with enhanced permeability and selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Ding A, Ren Z, Zhang Y, Ma J, Bai L, Wang B, Cheng X. Evaluations of holey graphene oxide modified ultrafiltration membrane and the performance for water purification. CHEMOSPHERE 2021; 285:131459. [PMID: 34256201 DOI: 10.1016/j.chemosphere.2021.131459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Membrane technology has been widely used in the fields of drinking water treatment with the advantages of pollutants separation. However, membrane fouling has become main obstacle in further application. Graphene oxide (GO) and its functionalized derivatives are considered to be ideal membrane modification materials of membrane fouling control. However, GO coated membranes were suffered from serious flux decline which raises challenges for GO modification. In this study, porous holey graphene oxide (HGO) was synthesized by hydrothermal etched GO to modify UF membranes. Water permeability of HGO membrane was more than twice that of GO membrane at the loading of 0.08 g/m2. At the optimal loading of 0.08 g/m2, the rejection rate of HGO coated membrane on natural organic matter (NOM) such as bovine serum albumin (BSA), sodium alginate (SA) and humic acid (HA) was increased from 55%, 29%, 58%-85%, 72%, 92%, and the contact angle was reduced from 71° to 35° with the HGO coating amount of 0.04 g/m2. Finally, the membrane fouling resistance distribution of each HGO membrane was analyzed given HA as model pollutant, and the effects of HGO on mitigating the organic fouling of Polyethersulfone (PES) membranes were discussed. The total fouling resistance decreased from 3.45 to 1.73 with HGO coating, the irreversible fouling decreased by 62.86%-95.83%. Standard blocking was dominated during filtration. It was also found that increasing the loading of HGO could delay the conversion of pore blocking to the cake layer. Overall, HGO coating has an application prospect for membrane fouling control.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Zixiao Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuehua Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China.
| |
Collapse
|
17
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
18
|
Larocque MJ, Latulippe DR, de Lannoy CF. Formation of electrically conductive hollow fiber membranes via crossflow deposition of carbon nanotubes – Addressing the conductivity/permeability trade-off. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Mahalingam DK, Falca G, Upadhya L, Abou-Hamad E, Batra N, Wang S, Musteata V, da Costa PM, Nunes SP. Spray-coated graphene oxide hollow fibers for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Wu Z, Gao L, Wang J, Zhao F, Fan L, Hua D, Japip S, Xiao J, Zhang X, Zhou SF, Zhan G. Preparation of glycine mediated graphene oxide/g-C3N4 lamellar membranes for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117948] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Chen X, Feng Z, Gohil J, Stafford CM, Dai N, Huang L, Lin H. Reduced Holey Graphene Oxide Membranes for Desalination with Improved Water Permeance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1387-1394. [PMID: 31834774 DOI: 10.1021/acsami.9b19255] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reduced graphene oxide (r-GO) membranes with narrow channels exhibit salt rejections comparable to conventional nanofiltration (NF) membranes. However, their water permeances are much lower because of the high tortuosity for water permeation. Herein, we report a facile solution-processable approach to create in-plane nanopores on GO nanosheets before reduction, dramatically decreasing the tortuosity and increasing water permeance while retaining the salt rejection. Specifically, holey GO (HGO) nanosheets were prepared via chemical etching using hydrogen peroxide followed by the deposition on a porous support by vacuum filtration and then reduction via exposure to hydriodic acid solutions to generate the reduced HGO (r-HGO) membrane. The generation of nanopores increases the water permeance from 0.4 L m-2 h-1 bar-1 (LMH/bar) to 6.6 LMH/bar with Na2SO4 rejection greater than 98.5%, and the membranes were robust under strong cross-flow shearing force for 36 h. Both water permeance and Na2SO4 rejection of these r-HGO membranes for the first time simultaneously reach the level of the commercial polyamide-based NF membranes. Given their good antibacterial properties and resistance to aggressive chemical washing, the r-HGO membranes show promise as next-generation NF membranes for desalination.
Collapse
Affiliation(s)
| | | | | | - Christopher M Stafford
- Materials Science & Engineering Division , National Institute of Standards and Technology , MS 8542, 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | | | | | | |
Collapse
|