1
|
Paniagua SA, Menezes DB, Murillo MFC, Henriquez LC, Baudrit JRV. Nature-inspired innovations: unlocking the potential of biomimicry in bionanotechnology and beyond. DISCOVER NANO 2024; 19:186. [PMID: 39570498 PMCID: PMC11582260 DOI: 10.1186/s11671-024-04153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2024]
Abstract
Bionanotechnology research has surged to the forefront of scientific innovation, propelling the exploration of cutting-edge technologies and interdisciplinary collaboration. Biomimicry, which harnesses nature's ingenuity, drives the development of novel research-based solutions in diverse fields such as vaccines, medicine, and biomedical devices. Nature's role is becoming increasingly pivotal in addressing complex challenges related to environmental conservation, human health, and pandemic preparedness, including those posed by SARS-CoV-2 and other emerging pathogens. Progress in this domain encompasses understanding nature´s mechanisms to develop advanced materials inspired by biological structures. Biomimetic innovations have the potential to revolutionize industries, reduce environmental impacts, and facilitate a more harmonious relationship between humans and nature while considering bioethics, underlining the necessity of conducting responsible research and implementing biomimetic advancements conscientiously. As biomimicry continues to grow, integrating ethical guidelines and policies will ensure these nature-inspired technologies' sustainable development and application, ultimately contributing to a more resilient and adaptive society. This mini-review article broadly overviews bionanotechnology applications based on natural examples.
Collapse
Affiliation(s)
- Sergio A Paniagua
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), 10109, Pavas, San José, Costa Rica
| | - Diego Batista Menezes
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), 10109, Pavas, San José, Costa Rica
| | | | - Luis Castillo Henriquez
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), 10109, Pavas, San José, Costa Rica
- Laboratory of Physical Chemistry, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - José Roberto Vega Baudrit
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), 10109, Pavas, San José, Costa Rica.
- Chemistry School, National University, Heredia, Costa Rica.
| |
Collapse
|
2
|
Belachew GB, Hu CC, Chang YY, Wang CF, Hung WS, Chen JK, Lai JY. An Eco-Friendly Manner to Prepare Superwetting Melamine Sponges with Switchable Wettability for the Separation of Oil/Water Mixtures and Emulsions. Polymers (Basel) 2024; 16:693. [PMID: 38475376 DOI: 10.3390/polym16050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Oil/water separation processes have garnered significant global attention due to the quick growth in industrial development, recurring chemical leakages, and oil spills. Hence, there is a significant demand for the development of inexpensive superwetting materials in an eco-friendly manner to separate oil/water mixtures and emulsions. In this study, a superwetting melamine sponge (SMS) with switchable wettabilities was prepared by modifying melamine sponge (MS) with sodium dodecanoate. The as-prepared SMS exhibited superhydrophobicity, superoleophilicity, underwater superoleophobicity, and underoil superhydrophobicity. The SMS can be utilized in treating both light and heavy oil/water mixtures through the prewetting process. It demonstrated fast permeation fluxes (reaching 108,600 L m-2 h-1 for a light oil/water mixture and 147,700 L m-2 h-1 for a heavy oil/water mixture) and exhibited good separation efficiency (exceeding 99.56%). The compressed SMS was employed in separating surfactant-stabilized water-in-oil emulsions (SWOEs), as well as surfactant-stabilized oil-in-water emulsions (SOWEs), giving high permeation fluxes (reaching 7210 and 5054 L m-2 h-1, respectively). The oil purity for SWOEs' filtrates surpassed 99.98 wt% and the separation efficiencies of SOWEs exceeded 98.84%. Owing to their remarkable capability for separating oil/water mixtures and emulsions, eco-friendly fabrication method, and feasibility for large-scale production, our SMS has a promising potential for practical applications.
Collapse
Affiliation(s)
- Guyita Berako Belachew
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yan-Yu Chang
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - Chih-Feng Wang
- Institute of Advanced Semiconductor Packaging and Testing, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| |
Collapse
|
3
|
Kinfu HH, Rahman MM. Separation Performance of Membranes Containing Ultrathin Surface Coating of Metal-Polyphenol Network. MEMBRANES 2023; 13:membranes13050481. [PMID: 37233542 DOI: 10.3390/membranes13050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Metal-polyphenol networks (MPNs) are being used as versatile coatings for regulating membrane surface chemistry and for the formation of thin separation layers. The intrinsic nature of plant polyphenols and their coordination with transition metal ions provide a green synthesis procedure of thin films, which enhance membrane hydrophilicity and fouling resistance. MPNs have been used to fabricate tailorable coating layers for high-performance membranes desirable for a wide range of applications. Here, we present the recent progress of the use of MPNs in membrane materials and processes with a special focus on the important roles of tannic acid-metal ion (TA-Mn+) coordination for thin film formation. This review introduces the most recent advances in the fabrication techniques and the application areas of TA-Mn+ containing membranes. In addition, this paper outlines the latest research progress of the TA-metal ion containing membranes and summarizes the role of MPNs in membrane performance. The impact of fabrication parameters, as well as the stability of the synthesized films, is discussed. Finally, the remaining challenges that the field still faces and potential future opportunities are illustrated.
Collapse
Affiliation(s)
- Hluf Hailu Kinfu
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Md Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
4
|
Lim EQ, Seah MQ, Lau WJ, Hasbullah H, Goh PS, Ismail AF, Emadzadeh D. Evaluation of Surface Properties and Separation Performance of NF and RO Membranes for Phthalates Removal. MEMBRANES 2023; 13:413. [PMID: 37103840 PMCID: PMC10142473 DOI: 10.3390/membranes13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Many studies indicated that phthalates, a common plasticizer, lurk silently in water bodies and can potentially harm living organisms. Therefore, removing phthalates from water sources prior to consumption is crucial. This study aims to evaluate the performance of several commercial nanofiltrations (NF) (i.e., NF3 and Duracid) and reverse osmosis (RO) membranes (i.e., SW30XLE and BW30) in removing phthalates from simulated solutions and further correlate the intrinsic properties of membranes (e.g., surface chemistry, morphology, and hydrophilicity) with the phthalates removal. Two types of phthalates, i.e., dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP), were used in this work, and the effects of pH (ranging from 3 to 10) on the membrane performance were studied. The experimental findings showed that the NF3 membrane could yield the best DBP (92.5-98.8%) and BBP rejection (88.7-91.7%) regardless of pH, and these excellent results are in good agreement with the surface properties of the membrane, i.e., low water contact angle (hydrophilicity) and appropriate pore size. Moreover, the NF3 membrane with a lower polyamide cross-linking degree also exhibited significantly higher water flux compared to the RO membranes. Further investigation indicated that the surface of the NF3 membrane was severely covered by foulants after 4-h filtration of DBP solution compared to the BBP solution. This could be attributed to the high concentration of DBP presented in the feed solution owing to its high-water solubility (13 ppm) compared to BBP (2.69 ppm). Further research is still needed to study the effect of other compounds (e.g., dissolved ions and organic/inorganic matters that might be present in water) on the performance of membranes in removing phthalates.
Collapse
Affiliation(s)
- En Qi Lim
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Mei Qun Seah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Woei Jye Lau
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Hasrinah Hasbullah
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Pei Sean Goh
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Daryoush Emadzadeh
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Li J, Gao J, Fang J, Ling T, Xia M, Cao X, Han Z, Chen Y. Environmental-friendly regenerated lignocellulose functionalized cotton fabric to prepare multi-functional degradable membrane for efficient oil-water separation and solar seawater desalination. Sci Rep 2023; 13:5251. [PMID: 37002350 PMCID: PMC10066188 DOI: 10.1038/s41598-023-32566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Freshwater pollution and shortage have become an imminent problem. Therefore, it is necessary to develop a multi-functional membrane for the production of fresh water. In this work, the regenerated lignocellulose modified cotton fabric was developed as a novel, multi-functional and degradable membrane (LCPT@CF) for efficient oil-water separation and solar steam generation for the first time. The fabrication method has the merits of simple, environmentally friendly and cost effective. The regenerated lignocellulose was adhered on the surface of cotton fabric by tannic acid and polyvinyl alcohol complexes tightly, and the multilayered structures of the LCPT@CF can be formed, which endowed the membranes with underwater superoleophobic property and durability. The underwater superoleophobic property enabled LCPT@CF to purify various kinds of oil-in-water emulsions with a separation efficiency of more than 99.90%. Moreover, benefiting from the excellent photothermal conversion capacity of regenerated lignocellulose, the LCPT@CF achieved high evaporation rate of 1.39 kg m-2 h-1 and favorable evaporation efficiency of 84% under 1 sun illumination, and the LCPT@CF also presented excellent salt-resistance for evaporating seawater for 20 cycles, without salt accumulation. More importantly, the LCPT@CF could be naturally degradable by microorganisms in the natural condition within 3 months, which had outstanding environmental friendliness. These above results demonstrated that the green and efficient LCPT@CF could play great potential in oil-water separation and sewage purification.
Collapse
Affiliation(s)
- Jiangyi Li
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Junkai Gao
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiangyu Fang
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tian Ling
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Mengsheng Xia
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xue Cao
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhi Han
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yan Chen
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
6
|
Li S, Zhang M, Sun J, Sun J, Wang Y. Preparation and characterization of superior hydrophilic PVDF/DA membranes by the self-polymerization approach of dopamine. Front Chem 2023; 11:1162348. [PMID: 37065826 PMCID: PMC10097915 DOI: 10.3389/fchem.2023.1162348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Polyvinylidene fluoride (PVDF) membranes are favored for their excellent properties. However, the inherent strong hydrophobicity of PVDF membranes limits their development in the field of water treatment. The objective of this study was to improve the performance of PVDF membranes using the self-polymerization, strong adhesion properties, and biocompatible effects of dopamine (DA). The PVDF/DA membrane modification conditions were simulated and optimized using response surface methodology (RSM), and the experimental design was used to investigate three main parameters. The results showed that the DA solution concentration of 1.65 g/L, the coating time of 4.5 h, the post-treatment temperature of 25°C, the contact angle decreased from 69° to 33.9°, and the pure water flux on the PVDF/DA membrane was higher than that on the original membrane. The absolute value of the relative error between the actual and predicted values is only 3.36 %. In the MBR parallel comparison test, compared with the PVDF/DA membrane, the total amount of extracellular polymers (EPS) of the PVDF membrane increased by 1.46 times and the polysaccharide increased by 1.56 times, which further showed that the PVDF/DA modified membrane had the excellent anti-pollution ability. Through Alpha diversity analysis, the biodiversity detected on PVDF/DA membranes was higher than that of PVDF membranes, which further proved its good bio-adhesion ability. These findings could offer a reference for the hydrophilicity, antifouling, and stability of PVDF/DA membranes, which would establish the foundation for the comprehensive applications in MBR.
Collapse
Affiliation(s)
- Shaofeng Li
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China
- *Correspondence: Shaofeng Li, ; Ying Wang,
| | - Meilin Zhang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
| | - Jian Sun
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Jianping Sun
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
| | - Ying Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- *Correspondence: Shaofeng Li, ; Ying Wang,
| |
Collapse
|
7
|
Hydrophilic modification of
PVDF
membranes for oily water separation with enhanced anti‐fouling performance. J Appl Polym Sci 2023. [DOI: 10.1002/app.53738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Wan P, Yang X, Feng Q, Shi S, Deng B, Zhang L. Biodegradable Chitosan-Based Membranes for Highly Effective Separation of Emulsified Oil/Water. ENVIRONMENTAL ENGINEERING SCIENCE 2022; 39:907-917. [PMID: 36636559 PMCID: PMC9807252 DOI: 10.1089/ees.2022.0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/17/2023]
Abstract
Efficient separation of oil droplets from oil/water emulsions is necessary for many energy and food industrial processes and for industrial wastewater treatment. Membrane microfiltration has been explored to address this issue because it is simple to operate and low in cost. However, filtration of oil droplets with a size around or less than 1 μm is still a major challenge. Furthermore, the fabrication process for polymeric membranes often uses hazardous organic solvents and petroleum-derived and nonbiodegradable raw materials, which pose additional environmental health and safety risk. In this study, we examined the use of chitosan-based membranes to efficiently remove oil droplets with an average diameter of ∼1 μm. The membranes were fabricated based on the rapid dissolution of chitosan in an alkaline/urea solvent system at a low temperature, thus avoiding the use of any toxic organic solvent. The chitosan membranes were further modified by dopamine and tannic acid (TA). The as-prepared membrane was characterized in terms of surface morphology, pore size distribution, and mechanical strength. The membrane performance was evaluated on a custom-designed crossflow filtration system. The results showed that the modified chitosan membrane with dopamine and TA had a water flux of 230.9 LMH at 1bar transmembrane pressure and oil droplet rejection of 99%. This water flux represented an increase of more than 10 times when compared with the original chitosan membrane without modification. The study also demonstrated excellent antifouling properties of the modified membrane that could achieve near 100% water flux recovery.
Collapse
Affiliation(s)
- Peng Wan
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
- Guangdong Provincial Engineering and Technology Research Center for Water Affairs, Big Data and Water Ecology, Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen, China
| | - Xuanning Yang
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qinhua Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Shuyu Shi
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Baolin Deng
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, USA
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
One-step rapid co-deposition of oxidant induced mussel-polyphenol coating on PVDF substrate for separating oily water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Jankowski W, Li G, Kujawski W, Kujawa J. Recent development of membranes modified with natural compounds: Preparation methods and applications in water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Hammond Quarcoo F, Shi L, Tong Y, Zhang Y, Miao C, Li W. Rapid Approach to Synthesizing a Tannic Acid (TA)-3-Aminopropyltrietoxysilane (APTES) Coating for Efficient Oil-Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13898-13909. [PMID: 36322411 DOI: 10.1021/acs.langmuir.2c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant polyphenol-inspired surface modification of membranes is helpful for oil-water separation. However, the preparation of this coating is time-consuming. Herein, we introduce a rapid synthesis of the TA-APTES coating by the addition of sodium periodate (SP). The surface chemical composition and morphology of the resultant TA-APTES hybrid coatings were characterized using SEM, ATR-FTIR, and XPS. The hydrophilicity and membrane performance were investigated by the water contact angle, pure water permeability, and oil rejection for an isooctane-in-water emulsion. The experimental findings revealed that the optimal microfiltration (MF) membrane (MF-TA-APTES-SP-0.05) displayed exceptional hydrophilicity and water permeability (9558 L m-2 h-1 bar-1). The membrane realized highly efficient separation with a permeability (4117 L m-2 h-1 bar-1) and rejection of oils (>99%). Furthermore, it possessed outstanding chemical stability and maintained underwater superoleophobicity even after exposure to harsh conditions. This simple and rapid strategy of developing hydrophilic coatings as a modifier for the poly(vinylidene fluoride) membranes has potential applications in oil-water separation and wastewater treatment.
Collapse
Affiliation(s)
- Fiona Hammond Quarcoo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Lijian Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Yaping Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Changqing Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| |
Collapse
|
12
|
Chen X, Zhan Y, Sun A, Feng Q, Yang W, Dong H, Chen Y, Zhang Y. Anchoring the TiO2@crumpled graphene oxide core–shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil–water emulsion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Zhang N, Cheng K, Zhang J, Li N, Yang X, Wang Z. A dual-biomimetic strategy to construct zwitterionic anti-fouling membrane with superior emulsion separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Song X, Jo C, Zhou M. Enhanced tetracycline removal using membrane-like air-cathode with high flux and anti-fouling performance in flow-through electro-filtration system. WATER RESEARCH 2022; 224:119057. [PMID: 36096029 DOI: 10.1016/j.watres.2022.119057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The membrane-like air-cathodes modified with different polyaniline were prepared using phase inversion method, which possessed dual functions of interception and electrochemical degradation, and showed good conductivity (15.9 ± 0.4 to 25.7 ± 0.5 mS cm-1) and porosity (77.0 ± 0.1 to 87.8 ± 0.1%) compared to the unmodified control one (13.2 ± 0.5 mS cm-1, and 63.1 ± 0.7%). At tetracycline 50 mg L-1, the cathode with 25 wt% polyaniline exhibited the highest rejection rate and final removal (71.1% and 92.9%, 35.9% and 31.4% higher than the control), the highest water flux recovery (97.9%), and the lowest attenuation of porosity and conductivity. The modified cathode also showed an autocatalytic effect on H2O2, an obvious ·OH peak appeared on the electron paramagnetic resonance curves. It also had good anti-fouling performance because it exhibited a high durability (the final removal was decreased by 4.0% after 15 cycles) with a long service life of 124 periods (372 h, 15.5 d). The tetracycline (0.5 mg L-1) removal in the river background was near 100%, and the chemical oxygen demand removal was 91.9%, supporting that it was suitable for treating antibiotics in natural water without adding agents but only for electricity consumption.
Collapse
Affiliation(s)
- Xiangru Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - ChungHyok Jo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Nano Science and Physical Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People's Republic of Korea
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
15
|
Chang Y, Shi X, He F, Wu T, Jiang L, Normakhamatov N, Sharipov A, Wang T, Wen M, Aisa HA. Valorization of Food Processing Waste to Produce Valuable Polyphenolics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8855-8870. [PMID: 35833703 DOI: 10.1021/acs.jafc.2c02655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional incineration and landfill of food processing waste (FPW) have polluted the environment and underutilized valuable bioactive compounds, including polyphenols in food waste. As one of the most widely occurring compounds in the FPW, polyphenols possess high utilization value in many fields such as human health, energy, and environmental protection. Extracting polyphenols directly from FPW can maximize the value of polyphenols and avoid waste of resources. However, traditional polyphenol extraction methods mostly use the Soxhlet extraction, infiltration, and impregnation method, consuming a large amount of organic solvent and suffering from long extraction time and low extraction efficiency. Emerging green extraction methods such as supercritical fluid extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and other methods can shorten the extraction time and improve the solvent extraction efficacy, resulting in the green and safe recovery of polyphenols from FPW. In this paper, the traditional treatment methods of FPW waste and the application of polyphenols in FPW are briefly reviewed, and the traditional extraction methods and emerging green extraction methods of polyphenols in FPW are compared to obtain insight into the start-of-the-art extraction approaches.
Collapse
Affiliation(s)
- Yuyin Chang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Xiaoyu Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Fei He
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Tao Wu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek Strasse 45, Tashkent 100015, Uzbekistan
| | - Avez Sharipov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek Strasse 45, Tashkent 100015, Uzbekistan
| | - Tianfu Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Mingzhang Wen
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China
| | - Haji Akber Aisa
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| |
Collapse
|
16
|
Zheng X, Tang Y, Bai Y. UV-curable optical transparent, aging resistance, liquid-repellent coatings based on a novel photosensitive fluorinated polysiloxane with long perfluoroalkyl side chains. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Shijie F, Jiefeng Z, Yunling G, Junxian Y. Polydopamine-CaCO3 modified superhydrophilic nanocomposite membrane used for highly efficient separation of oil-in-water emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Wang Y, Yang H, Yang Y, Zhu L, Zeng Z, Liu S, Li Y, Liang Z. Poly(vinylidene fluoride) membranes with underwater superoleophobicity for highly efficient separation of oil-in-water emulsions in resisting fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Sun J, Wang L, Wang Y, Lv W, Yao Y. Activation of peroxymonosulfate by MgCoAl layered double hydroxide: Potential enhancement effects of catalyst morphology and coexisting anions. CHEMOSPHERE 2022; 286:131640. [PMID: 34315085 DOI: 10.1016/j.chemosphere.2021.131640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The morphology and specific surface area of layered double hydroxide (LDH) are of great significance for optimizing the application of LDH in sewage treatment. Herein, we present a study of the relation between the catalytic property and the morphology of LDH via activating peroxymonosulfate (PMS) for degradation of organic pollutants. The results demonstrated that LDH nanoscrolls possessed a superior performance for methylene blue (MB) degradation, which achieved almost 100% removal in 40 min and the calculated apparent rate constant was about 2.1, 4.5 and 11.5 times higher than that of LDH nanosheets, Co2+ and Co3O4, respectively. According to the results of X-ray photoelectrons spectroscopy (XPS) and electron paramagnetic resonance (EPR), 1O2 was confirmed to play a dominant role in the MB degradation, where the redox cycle of Co3+/Co2+ provided the impetus for the reaction. Moreover, the pH and ion tolerance abilities of LDH nanoscrolls in PMS activating process were determined as well. Remarkably, CO32- and H2PO4- could even promote the generation of •OH and 1O2 to facilitate the progress of reaction. Overall, these findings in the study may provide more opportunities in the preparation of high-efficiency catalysts and give insight into the accelerated degradation of refractory contaminants with surrounding anions.
Collapse
Affiliation(s)
- Ji'an Sun
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Lixin Wang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yuge Wang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Weiyang Lv
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuyuan Yao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
20
|
Studies on the fouling behavior and cleaning method of pervaporation desalination membranes for reclamation of reverse osmosis concentrated water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Zhao P, Meng J, Zhang R, Cao B, Li P. Molecular design of chlorine-resistant polymer for pervaporation desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Huang Z, Yin S, Zhang J, Zhang N. Recent advances in membrane hydrophilic modification with plant polyphenol‐inspired coatings for enhanced oily emulsion separation. J Appl Polym Sci 2021. [DOI: 10.1002/app.50587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhaohe Huang
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Shumeng Yin
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Jianzhong Zhang
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Na Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
23
|
Cao Y, Zhang H, Guo S, Luo J, Wan Y. A robust dually charged membrane prepared via catechol-amine chemistry for highly efficient dye/salt separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119287] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Mei H, Gao Z, Wang Q, Sun H, Zhao K, Zhang P, Hao J, Ashokkumar M, Cui J. Ultrasound expands the versatility of polydopamine coatings. ULTRASONICS SONOCHEMISTRY 2021; 74:105571. [PMID: 33930688 PMCID: PMC8100621 DOI: 10.1016/j.ultsonch.2021.105571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/18/2021] [Indexed: 05/06/2023]
Abstract
Polydopamine (PDA) coating of surfaces is a versatile strategy to fabricate functional films on various substrates, which typically requires oxygen and alkaline pH. Overcoming such limitations may enhance the versatility of this technique. Herein, we develop a simple and green sonochemical process for PDA coatings, which overcomes the limitations of traditional coating technique and expands the versatility of PDA chemistry. The oxidizing radicals generated by high frequency ultrasound (412 kHz) are utilized to initiate and accelerate the polymerization of dopamine. The sonochemical rate of film deposition is found to be about twice faster than that of the traditional method in the presence of oxygen. Importantly, the PDA coatings can be obtained in neutral or acidic aqueous solutions and even in the absence of oxygen. The PDA coatings can be moderated by turning on or off high frequency ultrasound. This study provides an environmentally friendly and economic method for the engineering of PDA coatings independent of the solution pH and nature of dissolved gas.
Collapse
Affiliation(s)
- Hanxiao Mei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qian Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Haifeng Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | | | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
25
|
A Dopamine/Tannic-Acid-Based Co-Deposition Combined with Phytic Acid Modification to Enhance the Anti-Fouling Property of RO Membrane. MEMBRANES 2021; 11:membranes11050342. [PMID: 34066378 PMCID: PMC8148169 DOI: 10.3390/membranes11050342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/18/2022]
Abstract
Reverse osmosis (RO) membranes are widely used in the field of water treatment. However, there are inevitably various fouling problems during long-term use. Surface engineering of RO membranes, such as hydrophilic modification, has attracted broad attention for improving the anti-fouling performance. In this work, we constructed a green biomimetic composite modification layer on the surface of polyamide membranes using a dopamine (DA)/tannic acid (TA) co-deposited layer to bridge the polyamide surface and hydrophilic phytic acids (PhA). The DA/TA interlayer could firmly adhere to the RO membranes, reducing the aggregation of DA and providing abundant phenolic hydroxyl sites to graft PhA. Meanwhile, the anchored PhA molecule bearing six phosphate groups could effectively improve the superficial hydrophilicity. The membranes were characterized by the SEM, AFM, XPS, water contact angle test, and zeta potential test. After surface modification, the hydrophilicity, smoothness, and surface electronegativity were enhanced obviously. The flux and rejection of the virgin membrane were 76.05 L·m−2·h−1 and 97.32%, respectively. While the modified D2/T4-PhA membrane showed decent permeability with a water flux of 57.37 L·m−2·h−1 and a salt rejection of 98.29%. In the dynamic fouling test, the modified RO membranes demonstrated enhanced anti-fouling performance toward serum albumins (BSA), sodium alginates (SA), and dodecyl trimethyl ammonium bromides (DTAB). In addition, the modified membrane showed excellent stability in the 40 h long-term test.
Collapse
|
26
|
Rapid and robust modification of PVDF ultrafiltration membranes with enhanced permselectivity, antifouling and antibacterial performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118316] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Bai Z, Wang L, Liu C, Yang C, Lin G, Liu S, Jia K, Liu X. Interfacial coordination mediated surface segregation of halloysite nanotubes to construct a high-flux antifouling membrane for oil-water emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118828] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Gezici O, Bişgin AT. Generation of a pH-blind/pH-sensitive alternating surface on a hydrophobic resin by mussel-inspired chemistry and investigating the effect of surface modification on the adsorption dynamics of some anionic colorants. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Gai W, Zhang Y, Zhao Q, Chung TS. Highly permeable thin film composite hollow fiber membranes for brackish water desalination by incorporating amino functionalized carbon quantum dots and hypochlorite treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Jiang B, Cheng K, Zhang N, Yang N, Zhang L, Sun Y. One-step modification of PVDF membrane with tannin-inspired highly hydrophilic and underwater superoleophobic coating for effective oil-in-water emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117724] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Wang Q, Wu X, Chen J, Li W, Zhang H, Wang J. Ultrathin and stable organic-inorganic lamellar composite membrane for high-performance organic solvent nanofiltration. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.116002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Wang J, Sun Y, Bi W, Jiang Z, Zhang M, Pang J. High-strength corrosion resistant membranes for the separation of oil/water mixtures and immiscible oil mixtures based on PEEK. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Wang M, Xu Z, Hou Y, Li P, Sun H, Niu QJ. Fabrication of a superhydrophilic PVDF membrane with excellent chemical and mechanical stability for highly efficient emulsion separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Chu CH, Wang C, Xiao HF, Wang Q, Yang WJ, Liu N, Ju X, Xie JX, Sun SP. Separation of ions with equivalent and similar molecular weights by nanofiltration: Sodium chloride and sodium acetate as an example. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Li D, Lin J, An Z, Li Y, Zhu X, Yang J, Wang Q, Zhao J, Zhao Y, Chen L. Enhancing hydrophilicity and comprehensive antifouling properties of microfiltration membrane by novel hyperbranched poly(N-acryoyl morpholine) coating for oil-in-water emulsion separation. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Yang X, Yuan L, Zhao Y, Yan L, Bai Y, Ma J, Li S, Sorokin P, Shao L. Mussel-inspired structure evolution customizing membrane interface hydrophilization. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Perfluoro-functionalized polyethyleneimine that enhances antifouling property of nanofiltration membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Zhao P, Xue Y, Zhang R, Cao B, Li P. Fabrication of pervaporation desalination membranes with excellent chemical resistance for chemical washing. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Yan W, Shi M, Dong C, Liu L, Gao C. Applications of tannic acid in membrane technologies: A review. Adv Colloid Interface Sci 2020; 284:102267. [PMID: 32966965 DOI: 10.1016/j.cis.2020.102267] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 01/26/2023]
Abstract
Today, membrane technologies play a big role in chemical industry, especially in separation engineering. Tannic acid, one of the most famous polyphenols, has attracted widespread interest in membrane society. In the past several years, researches on the applications of tannic acid in membrane technologies have grown rapidly. However, there has been lack of a comprehensive review for now. Here, we summarize the recent developments in this field for the first time. We comb the history of tannic acid and introduce the properties of tannic acid firstly, and then we turn our focus onto the applications of membrane surface modification, interlayers and selective layers construction and mixed matrix membrane development. In those previous works, tannic acid has been demonstrated to be capable of making a great contribution to the membrane science and technology. Especially in membrane surface/interface engineering (such as the construction of superhydrophilic and antifouling surfaces and polymer/nanoparticle interfaces with high compatibility) and development of thin film composite membranes with high permselectivity (such as developing thin film composite membranes with ultrahigh flux and high rejection), tannic acid can play a positive and great role. Despite this, there are still many critical challenges lying ahead. We believe that more exciting progress will be made in addressing these challenges in the future.
Collapse
Affiliation(s)
- Wentao Yan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengqi Shi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Chenxi Dong
- Research Institute of Shannxi Yanchang Petroleum (Group) Co. Ltd., Xi'an 710075, PR China
| | - Lifen Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
40
|
Zhao S, Sun Q, Gu Y, Yang W, Chen Y, Lin J, Dong M, Cheng H, Hu H, Guo Z. Enteromorpha prolifera polysaccharide based coagulant aid for humic acids removal and ultrafiltration membrane fouling control. Int J Biol Macromol 2020; 152:576-583. [DOI: 10.1016/j.ijbiomac.2020.02.273] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
|
41
|
Yan Z, Zhang Y, Yang H, Fan G, Ding A, Liang H, Li G, Ren N, Van der Bruggen B. Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: A review. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Gao J, Wang KY, Chung TS. Design of nanofiltration (NF) hollow fiber membranes made from functionalized bore fluids containing polyethyleneimine (PEI) for heavy metal removal. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Yang J, Sun F, Zhao L, Xing DY, Dong W, Dong Z. High-conductivity microfiltration membranes incorporated with ionic liquids and their superior anti-fouling effectiveness. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Elshorafa R, Saththasivam J, Liu Z, Ahzi S. Efficient oil/saltwater separation using a highly permeable and fouling-resistant all-inorganic nanocomposite membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15488-15497. [PMID: 32077028 PMCID: PMC7190607 DOI: 10.1007/s11356-020-08021-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/06/2020] [Indexed: 05/13/2023]
Abstract
Although it is still a great challenge, developing oil-/water-separating membranes that combine the advantages of high separation efficiency, salty environments tolerance, and fouling resistance are highly demanded for marine oil spill cleanups and oil-/gas-produced water treatment. Here, we report a new type of all-inorganic nanostructured membrane, which is composed of titanate nanofibers and SiO2 particulate gel for efficient and stable oil/saltwater separation. The nanoporous and interconnected network structure constructed with titanate nanofibers is the key to ensure the high separation efficiency and high water flux of the new membrane. The SiO2 gel is used as a binder to offer mechanical flexibility and integrity for this type of all-inorganic membrane. The new membrane displays a high oil/water separation efficiency of above 99.5% with oil content in treated effluent lower than US environmental discharge standards (42 ppm) and high water permeation flux of 1600 LMH/bar under low operation pressure. The new membrane also demonstrates outstanding durability in the environment of different salinities, and it has a good resistance for oil fouling due to its excellent underwater superoleophobicity with an oil contact angle above 150 °. Most importantly, the underwater superoleophobic properties can be well maintained after being repeatedly reused. The excellent environmental durability, oil-fouling resistance, high separation efficiency, and facile fabrication process for this new type of membrane render great potential for industrial application in treating produced water.
Collapse
Affiliation(s)
- Rand Elshorafa
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, P.O. Box 5825, Doha, Qatar
| | - Jayaprakash Saththasivam
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Zhaoyang Liu
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Said Ahzi
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| |
Collapse
|
45
|
Tang MJ, Liu ML, Wang DA, Shao DD, Wang HJ, Cui Z, Cao XL, Sun SP. Precisely Patterned Nanostrand Surface of Cucurbituril[ n]-Based Nanofiltration Membranes for Effective Alcohol-Water Condensation. NANO LETTERS 2020; 20:2717-2723. [PMID: 32207960 DOI: 10.1021/acs.nanolett.0c00344] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low concentration alcohols produced by state-of-the-art biological fermentation restrict subsequent purification processes for chemical, pharmaceutical, biofuel, and other applications. Herein, a rarely reported cucurbituril[n] (n = 6, 8) is employed to pattern the thin-film composite membranes with controllable and quantifiable nanostrand structures through a host-guest strategy. The resulting nanofiltration membrane with such morphology is the first report that exhibits excellent separation performance for isopropyl alcohol (IPA) and water, condensing the initial 0.5 wt % IPA aqueous solution to 9.0 wt %. This not only provides a novel strategy for patterning nanostructural morphology but also makes nanofiltration membranes promising for alcohol condensation in the biological fermentation industry that may reduce energy consumption and postprocessing costs.
Collapse
Affiliation(s)
- Ming-Jian Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Mei-Ling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Da-An Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Dan-Dan Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Hua-Jiang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
46
|
Pan D, Ge S, Tian J, Shao Q, Guo L, Liu H, Wu S, Ding T, Guo Z. Research Progress in the Field of Adsorption and Catalytic Degradation of Sewage by Hydrotalcite‐Derived Materials. CHEM REC 2020; 20:355-369. [DOI: 10.1002/tcr.201900046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Duo Pan
- College of Chemical and Environmental Engineering, ShandongUniversity of Science and Technology Qingdao 266590 China
| | - Shengsong Ge
- College of Chemical and Environmental Engineering, ShandongUniversity of Science and Technology Qingdao 266590 China
| | - Jiangyang Tian
- College of Chemical and Environmental Engineering, ShandongUniversity of Science and Technology Qingdao 266590 China
| | - Qian Shao
- College of Chemical and Environmental Engineering, ShandongUniversity of Science and Technology Qingdao 266590 China
| | - Lin Guo
- College of Chemical and Environmental Engineering, ShandongUniversity of Science and Technology Qingdao 266590 China
| | - Hu Liu
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular EngineeringUniversity of Tennessee Knoxville TN 37996 USA
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou University Zhengzhou 450002 China
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface ScienceZhengzhou University of Light Industry No. 136, Science Avenue Zhengzhou 450001 China
| | - Tao Ding
- College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular EngineeringUniversity of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
47
|
Thermo-responsive separation membrane with smart anti-fouling and self-cleaning properties. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Liao X, Zhang WH, Ge Q. A cage-like supramolecular draw solute that promotes forward osmosis for wastewater remediation and source recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Priyadarshini A, Tay SW, Ng S, Hong L. Skinned carbonaceous composite membrane with pore channels bearing an anchored surfactant layer for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
|