1
|
Criscuoli A. Water-Energy Nexus: Membrane Engineering Towards a Sustainable Development. MEMBRANES 2025; 15:98. [PMID: 40277968 PMCID: PMC12029337 DOI: 10.3390/membranes15040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Sustainable development is linked to the achievement of several different objectives, as outlined by the 17 Sustainable Development Goals (SDGs) defined by the United Nations. Among them are the production of clean water and the combat of climate change, which is strictly linked to the use of fossil fuels as a primary energy source and their related CO2 emissions. Water and energy are strongly interconnected. For instance, when processing water, energy is needed to pump, treat, heat/cool, and deliver water. Membrane operations for water treatment/desalination contribute to the recovery of purified/fresh water and reducing the environmental impact of waste streams. However, to be sustainable, water recovery must not be energy intensive. In this respect, this contribution aims to illustrate the state of the art and perspectives in desalination by reverse osmosis (RO), discussing the various approaches looking to improve the energy efficiency of this process. In particular, the coupling of RO with other membrane operations, like pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and forward osmosis (FO), as well as the osmotic-assisted reverse osmosis (OARO) system, are reported. Moreover, the possibility of coupling a membrane distillation (MD) unit to an RO one to increase the overall freshwater recovery factor and reduce the brine volumes that are disposed is also discussed. Specific emphasis is placed on the strategies being applied to reduce the MD thermal energy demand, so as to couple the production of the blue gold with the fight against climate change.
Collapse
Affiliation(s)
- Alessandra Criscuoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| |
Collapse
|
2
|
Adewuyi A, Li Q. Per- and polyfluoroalkyl substances contamination of drinking water sources in Africa: Pollution sources and possible treatment methods. CHEMOSPHERE 2024; 365:143368. [PMID: 39306102 DOI: 10.1016/j.chemosphere.2024.143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Despite the detection of poly- and perfluorinated alkyl substances (PFAS) in the water system in Africa, the effort towards mitigating PFAS in water in Africa needs to be better understood. Therefore, this review evaluated the contamination status and mitigation methods for handling PFAS-contaminated water systems in Africa. The findings revealed the presence of PFAS in wastewater treatment plant (WWTP) effluents, surface water and commercially available bottled and tap water in African countries. The concentration of PFAS in drinking water sources reviewed ranged from < limits of quantification to 778 ng L-1. The sources of PFAS in water systems in Africa are linked to uncontrolled importation of PFAS-containing products, WWTP effluents and inappropriate disposal of PFAS-containing materials. The information on treatment methods for PFAS-contaminated water systems is scanty. Unfortunately, the treatment method is challenged by poor water research infrastructure and facilities, lack of awareness, poor research funding and weak legislation; however, adsorption and membrane technology seem favourable for removing PFAS from water systems in Africa. It is essential to focus on monitoring and assessing drinking water quality in Africa to reduce the disease burden that this may cause. Most African countries' currently implemented water treatment facilities cannot efficiently remove PFAS during treatment. Therefore, governments in Africa need to fund more research to develop an efficient water treatment technique that is sustainable in Africa.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria; Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, 77005, USA.
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, 77005, USA; NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, 6100 Main Street, Houston, 77005, USA; Department of Materials Science and Nano Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| |
Collapse
|
3
|
Regmi C, Kshetri YK, Wickramasinghe SR. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. MEMBRANES 2024; 14:160. [PMID: 39057668 PMCID: PMC11278710 DOI: 10.3390/membranes14070160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yuwaraj K. Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Asan 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Jawed AS, Nassar L, Hegab HM, van der Merwe R, Al Marzooqi F, Banat F, Hasan SW. Recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024; 10:e31656. [PMID: 38828351 PMCID: PMC11140715 DOI: 10.1016/j.heliyon.2024.e31656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The freshwater shortage continues to be one of the greatest challenges affecting our planet. Although traditional membrane distillation (MD) can produce clean water regardless of climatic conditions, the process wastes a lot of energy. The technique of solar-powered membrane distillation (SPMD) has received a lot of interest in the past decade, thanks to the development of photothermal materials. SPMD is a promising replacement for the traditional MD based on fossil fuels, as it can prevent the harmful effects of emissions on the environment. Integrating green solar energy with MD can reduce the cost of the water purification process and secure freshwater production in remote areas. At this point, it is important to consider the most current progress of the SPMD system and highlight the challenges and prospects of this technology. Based on this, the background, recent advances, and principles of MD and SPMD, their configurations and mechanisms, fabrication methods, advantages, and current limitations are discussed. Detailed comparisons between SPMD and traditional MD, assessments of various standards for incorporating photothermal materials with desirable properties, discussions of desalination and other applications of SPMD and MD, and energy consumption rates are also covered. The final section addresses the potential of SPMD to outperform traditional desalination technology while improving water production without requiring a significant amount of electrical or high-grade thermal energy.
Collapse
Affiliation(s)
- Ahmad S. Jawed
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Lobna Nassar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M. Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Riaan van der Merwe
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Al Marzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Tarek Ghaly S, Eldemerdash UN, El-Shazly AH. Morphology and Thermodynamic Study of a Novel Composite Membrane from Waste Polystyrene/Slag: Experimental Investigation. ACS OMEGA 2024; 9:23512-23522. [PMID: 38854541 PMCID: PMC11154918 DOI: 10.1021/acsomega.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
The development of the membrane surface and cross-sectional morphology is pivotal in influencing the effectiveness of membrane separation. In this study, evaluating the separation rates between the solvent and nonsolvent in the casting solution and the related thermodynamic alteration analysis were illustrated. Additionally, the rheological variations were determined by measuring the viscosity of the resulting dope solutions, providing an initial estimation of the phase separation kinetics. Asymmetric polystyrene (PS)/slag composite membrane, incorporating slag waste as an inorganic additive, was developed. Dimethylformamide (DMF) was utilized as the solvent, and sodium dodecyl sulfate (SDS) was employed as an anionic surfactant to facilitate the casting process. A tertiary system diagram approach involving waste PS, DMF, and water introducing slag as an inorganic additive and SDS as a surfactant was attained to promote the separation of the solvent and nonsolvent in the casting solution. These novel composite mixtures exhibited increased thermodynamic instability within the coagulation bath, facilitating the rapid separation of solid membranes from the dope solutions and forming composite membranes with significantly increased porosity (exceeding a 20% increase) compared to that of plain waste materials. The composite membrane characteristics were assessed with the widely used poly(vinylidene difluoride) (PVDF) membrane, showing comparative features and performance when tested on a membrane distillation (MD) cell; it gave a flux of 1 kg/m2·h. These promising characteristics positioned this novel PS/slag composite membrane as a candidate for various water-related applications.
Collapse
Affiliation(s)
- Salma Tarek Ghaly
- Chemical
and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology, New Borg AL Arab City, 21934 Alexandria, Egypt
- Central
Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, 11421 Cairo, Egypt
| | - Usama Nour Eldemerdash
- Chemical
and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology, New Borg AL Arab City, 21934 Alexandria, Egypt
- Benha
Faculty of Engineering, Benha University, 13511 Qaliobiya, Egypt
| | - A. H. El-Shazly
- Chemical
and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology, New Borg AL Arab City, 21934 Alexandria, Egypt
- Chemical
Engineering Department, Faculty of Engineering, Alexandria University, 5424041 Alexandria, Egypt
| |
Collapse
|
6
|
Zheng L, Ulbricht M, Van der Bruggen B, Wang Z, Hou D, Wei Y. Making waves: Magneto-responsive membranes with special and switchable wettability: new opportunities for membrane distillation. WATER RESEARCH 2024; 249:120939. [PMID: 38043347 DOI: 10.1016/j.watres.2023.120939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Membrane distillation (MD) has promising potential in the water purification and wastewater treatment industries; however, fouling and wetting are the main obstacles to its commercialization, and higher fluxes and energy efficiencies are essential. Magneto-responsive membranes (MagMem) with integrated magnetic nanoparticles (MNPs) enable in situ fouling mitigation and switchable separation by nano-mixing or nano-heating, triggered by external magnetic fields, in a range of membrane processes, but not yet been demonstrated in MD. This perspective discussed the potential paths of MagMem utilization in MD based on the research status and dilemmas of MD. It can be envisioned that MagMem will lead to a paradigm shift in MD, especially by in situ fouling/wetting mitigation and enhancing energy efficiency via in-place actuation and localized heating by MNPs. Moreover, remotely controllable pore tuning and specific or switchable wettability can also be anticipated. Overall, MagMem provides attractive opportunities for advanced robust and efficient MD.
Collapse
Affiliation(s)
- Libing Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany; Department of Chemical Engineering, KU Leuven, Leuven B-3001, Belgium
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | | | - Zhangxin Wang
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Deyin Hou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Beijing 100085, China.
| |
Collapse
|
7
|
Liao X, Lim YJ, Khayet M, Liao Y, Yao L, Zhao Y, Razaqpur AG. Applications of electrically conductive membranes in water treatment via membrane distillation: Joule heating, membrane fouling/scaling/wetting mitigation and monitoring. WATER RESEARCH 2023; 244:120511. [PMID: 37651868 DOI: 10.1016/j.watres.2023.120511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Membrane distillation (MD) is a thermally driven separation process that is driven by phase change. The core of this technology is the hydrophobic microporous membrane that prevents mass transfer of the liquid while allowing the vapor phase to pass through the membrane's pores. Currently, MD is challenged by its high energy consumption and membrane degradation due to fouling, scaling and wetting. The use of electrically conductive membranes (ECMs) is a promising alternative method to overcome these challenges by inducing localized Joule heating, as well as mitigating and monitoring membrane fouling/scaling/wetting. The objective of this review is to consolidate recent advances in ECMs from the standpoint of conductive materials, membrane fabrication methodologies, and applications in MD processes. First, the mechanisms of ECMs-based MD processes are reviewed. Then the current trends in conductive materials and membrane fabrication methods are discussed. Thereafter, a comprehensive review of ECMs in MD applications is presented in terms of the different processes using Joule heating and various works related to membrane fouling, scaling, and wetting control and monitoring. Key insights in terms of energy consumption, economic viability and scalability are furnished to provide readers with a holistic perspective of the ECMs potential to achieve better performances and higher efficiencies in MD. Finally, we illustrate our perspectives on the innovative methods to address current challenges and provide insights for advancing new ECMs designs. Overall, this review sums up the current status of ECMs, looking at the wide range of conductive materials and array of fabrication methods used thus far, and putting into perspective strategies to deliver a more competitive ECMs-based MD process in water treatment.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China
| | - Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China.
| | - Lei Yao
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yali Zhao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
8
|
Han F, Zhao J, Bian Y, Guo J, Chen L. Electro mitigation of calcium carbonate and calcium sulfate scaling in an optimized thermal conductive membrane distillation process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
Ren K, Lu X, Zheng S, Zhang S, Ma R, Yang Y. A novel preparation method for protective coating on hydrophobic membrane based on vapor opposite transmission process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Zare S, Kargari A. CFD simulation and optimization of an energy-efficient direct contact membrane distillation (DCMD) desalination system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
PTFE porous membrane technology: A comprehensive review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Pagliero M, Comite A, Soda O, Costa C. Influence of carbon-based fillers on photoactive mixed matrix membranes formation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Liu Y, Wang J, Jung B, Rao U, Sedighi E, Hoek EMV, Tilton N, Cath TY, Turchi CS, Heeley MB, Ju YS, Jassby D. Desalinating a real hyper-saline pre-treated produced water via direct-heat vacuum membrane distillation. WATER RESEARCH 2022; 218:118503. [PMID: 35500328 DOI: 10.1016/j.watres.2022.118503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) is an emerging thermal desalination technology capable of desalinating waters of any salinity. During typical MD processes, the saline feedwater is heated and acts as the thermal energy carrier; however, temperature polarization (as well as thermal energy loss) contributes to low distillate fluxes, low single-pass water recovery and poor thermal efficiency. An alternative approach is to integrate an extra thermal energy carrier as part of the membrane and/or module assembly, which can channel externally provided heat directly to the membrane-feedwater interface and/or along the feed channel length. This direct-heat delivery has been demonstrated to increase single-pass water recovery and enhance the overall thermal efficiency. We developed a bench-scale direct-heated vacuum MD (DHVMD) process to desalinate pre-treated oil and gas "produced water" with an initial total dissolved solids of 115,500 ppm at a feed temperature ranging between 24 and 32 °C. We evaluated both water flux and specific energy consumption (SEC) as a function of water recovery. The system achieved a 50% water recovery without significant scaling, with an average flux >6 kg m-2 hr-1 and a SEC as low as 2,530 kJ kg-1. The major species of mineral scales (i.e., NaCl, CaSO4, and SrSO4) that limited the water recovery to 68% were modeled in terms of thermodynamics and identified by scanning electron microscopy and energy-dispersive X-ray spectroscopy. In addition, we further developed and employed a physics-based process model to estimate temperature, salinity, water transport and energy flows for full-scale vacuum MD and DHVMD modules. Model results show that a direct-heat input rate of 3,600 W can increase single-pass water recovery from 2.1% to 3.1% while lowering the thermal SEC from 7,800 kJ kg-1 to 6,517 kJ kg-1 in an unoptimized module. Finally, the scaling up potential of DHVMD process is briefly discussed.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jingbo Wang
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Bongyeon Jung
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Unnati Rao
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Erfan Sedighi
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, United States
| | - Eric M V Hoek
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States; Energy Science & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nils Tilton
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, United States
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Craig S Turchi
- Buildings & Thermal Science Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Michael B Heeley
- Department of Economics and Business, Colorado School of Mines, Golden, CO, United States
| | - Y Sungtaek Ju
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, United States
| | - David Jassby
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States.
| |
Collapse
|
14
|
Das S, Ronen A. A Review on Removal and Destruction of Per- and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. MEMBRANES 2022; 12:662. [PMID: 35877866 PMCID: PMC9325267 DOI: 10.3390/membranes12070662] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are anthropogenic chemicals consisting of thousands of individual species. PFAS consists of a fully or partly fluorinated carbon-fluorine bond, which is hard to break and requires a high amount of energy (536 kJ/mole). Resulting from their unique hydrophobic/oleophobic nature and their chemical and mechanical stability, they are highly resistant to thermal, chemical, and biological degradation. PFAS have been used extensively worldwide since the 1940s in various products such as non-stick household items, food-packaging, cosmetics, electronics, and firefighting foams. Exposure to PFAS may lead to health issues such as hormonal imbalances, a compromised immune system, cancer, fertility disorders, and adverse effects on fetal growth and learning ability in children. To date, very few novel membrane approaches have been reported effective in removing and destroying PFAS. Therefore, this article provides a critical review of PFAS treatment and removal approaches by membrane separation systems. We discuss recently reported novel and effective membrane techniques for PFAS separation and include a detailed discussion of parameters affecting PFAS membrane separation and destruction. Moreover, an estimation of cost analysis is also included for each treatment technology. Additionally, since the PFAS treatment technology is still growing, we have incorporated several future directions for efficient PFAS treatment.
Collapse
Affiliation(s)
| | - Avner Ronen
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel;
| |
Collapse
|
15
|
Mustakeem M, El-Demellawi JK, Obaid M, Ming F, Alshareef HN, Ghaffour N. MXene-Coated Membranes for Autonomous Solar-Driven Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5265-5274. [PMID: 35060695 PMCID: PMC8815036 DOI: 10.1021/acsami.1c20653] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Clean water supply in off-grid locations remains a stumbling stone for socio-economic development in remote areas where solar energy is abundant. In this regard, several technologies have already introduced various solutions to the off-grid freshwater predicament; however, most of them are either costly or complex to operate. Nonetheless, photothermal membrane distillation (PMD) has emerged as a promising candidate with great potential to be autonomously driven by solar energy. Instead of using energy-intensive bulk feed heating in conventional MD systems, PMD membranes can directly harvest the incident solar light at the membrane interface as an alternative driving energy resource for the desalination process. Because of its excellent photothermal properties and stability in ionic environments, herein, Ti3C2Tx MXene was coated onto commercial polytetrafluoroethylene (PTFE) membranes to allow for a self-heated PMD process. An average water vapor flux of 0.77 kg/m2 h with an excellent temporal response under intermitting lighting and a photothermal efficiency of 65.3% were achieved by the PMD membrane under one-sun irradiation for a feed salinity of 0.36 g/L. Naturally, the efficiency of the process decreased with higher feed concentrations due to the reduction of the evaporation rate and the scattering of incident sunlight toward the membrane photothermal surface, especially at rates above 10 g/L. Notably, with such performance, 1 m2 of the MXene-coated PMD membrane can fulfill the recommended daily potable water intake for a household, that is, ca. 6 L/day.
Collapse
Affiliation(s)
- Mustakeem Mustakeem
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Science and Engineering Division (BESE), King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jehad K. El-Demellawi
- Physical
Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - M. Obaid
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Science and Engineering Division (BESE), King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fangwang Ming
- Physical
Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Husam N. Alshareef
- Physical
Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Science and Engineering Division (BESE), King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
16
|
Huang J, Zhang H, Zhang Y, Liang D, Chen H. Recycle coal fly ash for preparing tubular ceramic membranes applied in transport membrane condenser. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Carbon Black/Polyvinylidene Fluoride Nanocomposite Membranes for Direct Solar Distillation. ENERGIES 2022. [DOI: 10.3390/en15030740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Water reclamation is becoming a growing need, in particular in developing countries where harvesting the required energy can be a challenging problem. In this context, exploiting solar energy in a specifically tailored membrane distillation (MD) process can be a viable solution. Traditional MD guarantees a complete retention of non-volatile compounds and does not require high feed water temperatures. In this work, a suitable amount of carbon black (CB) was incorporated into the whole matrix of a polymeric porous membrane in order to absorb light and directly heat the feed. The mixed matrix membranes were prepared forming a uniform CB dispersion in the PVDF dope solution and then using a non-solvent induced phase separation process, which is a well-established technique for membrane manufacturing. CB addition was found to be beneficial on both the membrane structure, as it increased the pore size and porosity, and on the photothermal properties of the matrix. In fact, temperatures as high as 60 °C were reached on the irradiated membrane surface. These improvements led to satisfactory distillate flux (up to 2.3 L/m2h) during the direct solar membrane distillation tests performed with artificial light sources and make this membrane type a promising candidate for practical applications in the field of water purification.
Collapse
|
18
|
Esfarjani PM, Fashandi H, Karevan M, Moheb A. Tuning poly(vinyl chloride) membrane morphology to suit vacuum membrane distillation: Focusing on membrane preparation process based on phase separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Han F, Liu S, Wang K, Zhang X. Enhanced Performance of Membrane Distillation Using Surface Heating Process. MEMBRANES 2021; 11:membranes11110866. [PMID: 34832095 PMCID: PMC8619622 DOI: 10.3390/membranes11110866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Membrane distillation (MD) is a thermally driven desalination process that has excellent application prospects in seawater desalination or hypersaline wastewater treatment, while severe temperature polarization (TP) and the resulting relatively high energy consumption have become principal challenges limiting the commercial application of MD. Therefore, the design of novel systems to overcome the shortage of conventional MD requires urgent attention. Here, we developed three surface heating vacuum membrane distillation systems, namely, SHVMD-1, SHVMD-2, and SHVMD-3, according to the different positions of the thermal conducting layer in the cell. The distillate flux, TP, and energy performance of these systems under different operating conditions were investigated. All three systems showed stable performance, with a salt rejection >99.98% for 35 g/L NaCl, and the highest flux was close to 9 L/m2·h. The temperature polarization coefficients were higher than unity in SHVMD-2 and SHVMD-3 systems, and the SHVMD-2 system produced the lowest specific energy consumption and the highest thermal efficiency. In addition, we tested the intermittent surface heating process, which can further improve energy performance through reducing specific electrical energy consumption in vacuum membrane distillation. This paper provides a simple and efficient membrane system for the desalination of brines.
Collapse
Affiliation(s)
- Fei Han
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (S.L.); (K.W.)
- Correspondence:
| | - Shuxun Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (S.L.); (K.W.)
| | - Kang Wang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (S.L.); (K.W.)
| | - Xiaoyuan Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 639798, Singapore;
| |
Collapse
|
20
|
Mohd Ramli M, Ahmad AL, Oluwasola EI, Leo CP. Non-solvent Flux Augmentation of an LDPE-Coated Polytetrafluoroethylene Hollow Fiber Membrane for Direct Contact Membrane Distillation. ACS OMEGA 2021; 6:25201-25210. [PMID: 34632179 PMCID: PMC8495701 DOI: 10.1021/acsomega.1c02887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Membrane distillation (MD) is a thermal technology for the desalination process that requires a hydrophobic microporous membrane to ensure that the membrane can maintain the liquid-vapor interface. This work aims to enhance the water permeation flux of the previously coated membrane by modifying the surface of the polytetrafluoroethylene hollow fiber (PTFE HF) membrane with a selected non-solvent such as acetone, cyclohexanone, and ethanol in low-density polyethylene as a polymeric coating solution. However, the modification using acetone and cyclohexanone solvents was unsuccessful because a reduction in membrane hydrophobicity was observed. The modified PTFE HF membrane with ethanol content exhibits high wetting resistance with a high water contact angle, which can withstand pore wetting during the direct contact MD process. Since MD operates under a lower operating temperature range (50-90 °C) compared to the conventional distillation, we herein demonstrated that higher flux could be obtained at 7.26 L m-2 h-1. Thus, the process is economically feasible because of lower energy consumption. Performance evaluation of the modified PTFE HF membrane showed a high rejection of 99.69% for sodium chloride (NaCl), indicating that the coated membrane preferentially allowed only water vapor to pass through.
Collapse
Affiliation(s)
- Mohamad
Razif Mohd Ramli
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal, 14300 Pulau Pinang, Malaysia
| | - Abdul Latif Ahmad
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal, 14300 Pulau Pinang, Malaysia
| | - Ebenezer Idowu Oluwasola
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal, 14300 Pulau Pinang, Malaysia
- Food
Technology Department, The Federal Polytechnic
Ado Ekiti, Ado Ekiti, 360231 Ekiti state, Nigeria
| | - Choe Peng Leo
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal, 14300 Pulau Pinang, Malaysia
| |
Collapse
|
21
|
Huang J, Tang T, He Y. Numerical Simulation Study on the Mass and Heat Transfer in the Self-Heating Membrane Distillation Process. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Huang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Key Laboratory of New Energy Storage Materials and Processes, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Tianqi Tang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Key Laboratory of New Energy Storage Materials and Processes, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Yurong He
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Key Laboratory of New Energy Storage Materials and Processes, Harbin, Heilongjiang 150001, People’s Republic of China
| |
Collapse
|
22
|
Research Progress in Computational Fluid Dynamics Simulations of Membrane Distillation Processes: A Review. MEMBRANES 2021; 11:membranes11070513. [PMID: 34357163 PMCID: PMC8305024 DOI: 10.3390/membranes11070513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Membrane distillation (MD) can be used in drinking water treatment, such as seawater desalination, ultra-pure water production, chemical substances concentration, removal or recovery of volatile solutes in an aqueous solution, concentration of fruit juice or liquid food, and wastewater treatment. However, there is still much work to do to determine appropriate industrial implementation. MD processes refer to thermally driven transport of vapor through non-wetted porous hydrophobic membranes, which use the vapor pressure difference between the two sides of the membrane pores as the driving force. Recently, computational fluid dynamics (CFD) simulation has been widely used in MD process analysis, such as MD mechanism and characteristics analysis, membrane module development, preparing novel membranes, etc. A series of related research results have been achieved, including the solutions of temperature/concentration polarization and permeate flux enhancement. In this article, the research of CFD applications in MD progress is reviewed, including the applications of CFD in the mechanism and characteristics analysis of different MD structures, in the design and optimization of membrane modules, and in the preparation and characteristics analysis of novel membranes. The physical phenomena and geometric structures have been greatly simplified in most CFD simulations of MD processes, so there still is much work to do in this field in the future. A great deal of attention has been paid to the hydrodynamics and heat transfer in the channels of MD modules, as well as the optimization of these modules. However, the study of momentum transfer, heat, and mass transfer mechanisms in membrane pores is rarely involved. These projects should be combined with mass transfer, heat transfer and momentum transfer for more comprehensive and in-depth research. In most CFD simulations of MD processes, some physical phenomena, such as surface diffusion, which occur on the membrane surface and have an important guiding significance for the preparation of novel membranes to be further studied, are also ignored. As a result, although CFD simulation has been widely used in MD process modeling already, there are still some problems remaining, which should be studied in the future. It can be predicted that more complex mechanisms, such as permeable wall conditions, fouling dynamics, and multiple ionic component diffusion, will be included in the CFD modeling of MD processes. Furthermore, users’ developed routines for MD processes will also be incorporated into the existing commercial or open source CFD software packages.
Collapse
|
23
|
Mohd Ramli MR, Mat Radzi NH, Mohamad Esham MI, Alsebaeai MK, Ahmad AL. Advanced Application and Fouling Control in Hollow Fibre Direct Contact Membrane Distillation (HF-DCMD). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Kekre KM, Anvari A, Kahn K, Yao Y, Ronen A. Reactive electrically conducting membranes for phosphorus recovery from livestock wastewater effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111432. [PMID: 33386173 DOI: 10.1016/j.jenvman.2020.111432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
We present a novel 'proof-of-concept' electrochemically based membrane filtration process for the recovery of nitrogen and phosphorus from livestock wastewater following an anaerobic digestion step. Reactive electrically conducting membranes are shown to precipitate and separate struvite, an eco-friendly fertilizer from synthetic livestock wastewater, resulting in the production of a solid fertilizer and a high-quality water stream, fit for irrigation. The recovery process is based on electrochemical hydrolysis and control of local pH in proximity to the surface of the membrane, and therefore, does not require chemical additives for pH adjustment. The system was assessed at varying concentrations of nitrogen and phosphorus corresponding to diluted and concentrated livestock wastewater (up to 1000 mg/L of N and P). Experimental results show up to 65% removal of phosphorus and nitrogen in the first 30 min of electrochemical filtration, and the precipitates were analytically confirmed to be struvite. In addition, the recovery process was shown efficient as it resulted in limited membrane fouling and flux reduction. Fouling and precipitation results were explained by a mathematical model describing the concentration of N, P, Mg ions in the presence of an external electric field. Accordingly, precipitation takes place in proximity to the membrane's surface but not directly on it, thus, limiting surface fouling. The electrochemical filtration system does not require chemical additives for pH adjustment, and the cost associated with electrochemical membrane-based struvite recovery was calculated to be $158 per ton of dry struvite, which is about 1.4 times lower in comparison to conventional recovery approaches. Overall, the electrochemical filtration system may be a promising alternative for nutrient recovery from livestock wastewater in terms of operational costs, recovery efficiency, and fouling mitigation.
Collapse
Affiliation(s)
- Kartikeya M Kekre
- Department of Civil and Environmental Engineering, Temple University, USA
| | - Arezou Anvari
- Department of Civil and Environmental Engineering, Temple University, USA
| | - Katelyn Kahn
- Department of Civil and Environmental Engineering, Temple University, USA
| | - Ying Yao
- Department of Civil and Environmental Engineering, Temple University, USA
| | - Avner Ronen
- Department of Civil and Environmental Engineering, Temple University, USA.
| |
Collapse
|
25
|
Mohd Ramli M, Ahmad AL, Leo CP. Surface Modification of Polytetrafluoroethylene Hollow Fiber Membrane for Direct Contact Membrane Distillation through Low-Density Polyethylene Solution Coating. ACS OMEGA 2021; 6:4609-4618. [PMID: 33644568 PMCID: PMC7905806 DOI: 10.1021/acsomega.0c05107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Membrane distillation (MD) is an attractive technology for the separation of highly saline water used with a polytetrafluoroethylene (PTFE) hollow fiber (HF) membrane. A hydrophobic coating of low-density polyethylene (LDPE) coats the outer surface of the PTFE membrane to resolve membrane wetting as well as increase membrane permeability flux and salt rejection, a critical problem regarding the MD process. LDPE concentrations in coating solution have been studied and optimized. Consequently, the LDPE layer altered membrane morphology by forming a fine nanostructure on the membrane surface that created a hydrophobic layer, a high roughness of membrane, and a uniform LDPE network. The membrane coated with different concentrations of LDPE exhibited high water contact angles of 135.14 ± 0.24 and 138.08 ± 0.01° for membranes M-3 and M-4, respectively, compared to the pristine membrane. In addition, the liquid entry pressure values of LDPE-incorporated PTFE HF membranes (M-1 to M-5) were higher than that of the uncoated membrane (M-0) with a small decrease in the percentage of porosity. The M-3 and M-4 membranes demonstrated higher flux values of 4.12 and 3.3 L m-2 h-1 at 70 °C, respectively. On the other hand, the water permeation flux of 1.95 L m-2 h-1 for M-5 further decreased when LDPE concentration is increased.
Collapse
|
26
|
Sharma AK, Juelfs A, Colling C, Sharma S, Conover SP, Puranik AA, Chau J, Rodrigues L, Sirkar KK. Porous Hydrophobic-Hydrophilic Composite Hollow Fiber and Flat Membranes Prepared by Plasma Polymerization for Direct Contact Membrane Distillation. MEMBRANES 2021; 11:120. [PMID: 33567559 PMCID: PMC7916043 DOI: 10.3390/membranes11020120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
High water vapor flux at low brine temperatures without surface fouling is needed in membrane distillation-based desalination. Brine crossflow over surface-modified hydrophobic hollow fiber membranes (HFMs) yielded fouling-free operation with supersaturated solutions of scaling salts and their precipitates. Surface modification involved an ultrathin porous polyfluorosiloxane or polysiloxane coating deposited on the outside of porous polypropylene (PP) HFMs by plasma polymerization. The outside of hydrophilic MicroPES HFMs of polyethersulfone was also coated by an ultrathin coating of porous plasma-polymerized polyfluorosiloxane or polysiloxane rendering the surface hydrophobic. Direct contact membrane distillation-based desalination performances of these HFMs were determined and compared with porous PP-based HFMs. Salt concentrations of 1, 10, and 20 wt% were used. Leak rates were determined at low pressures. Surface and cross-sections of two kinds of coated HFMs were investigated by scanning electron microscopy. The HFMs based on water-wetted MicroPES substrate offered a very thin gas gap in the hydrophobic surface coating yielding a high flux of 26.4-27.6 kg/m2-h with 1 wt% feed brine at 70 °C. The fluxes of HFMs on porous PP substrates having a long vapor diffusion path were significantly lower. Coated HFM performances have been compared with flat hydrophilic membranes of polyvinylidene fluoride having a similar plasma-polymerized hydrophobic polyfluorosiloxane coating.
Collapse
Affiliation(s)
- Ashok K. Sharma
- Applied Membrane Technology Inc., 11558 Encore Circle, Minnetonka, MN 55343, USA; (A.K.S.); (A.J.); (C.C.); (S.S.)
| | - Adam Juelfs
- Applied Membrane Technology Inc., 11558 Encore Circle, Minnetonka, MN 55343, USA; (A.K.S.); (A.J.); (C.C.); (S.S.)
| | - Connor Colling
- Applied Membrane Technology Inc., 11558 Encore Circle, Minnetonka, MN 55343, USA; (A.K.S.); (A.J.); (C.C.); (S.S.)
| | - Saket Sharma
- Applied Membrane Technology Inc., 11558 Encore Circle, Minnetonka, MN 55343, USA; (A.K.S.); (A.J.); (C.C.); (S.S.)
| | - Stephen P. Conover
- Applied Membrane Technology Inc., 11558 Encore Circle, Minnetonka, MN 55343, USA; (A.K.S.); (A.J.); (C.C.); (S.S.)
| | - Aishwarya A. Puranik
- Otto York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA; (A.A.P.); (J.C.); (L.R.)
| | - John Chau
- Otto York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA; (A.A.P.); (J.C.); (L.R.)
| | - Lydia Rodrigues
- Otto York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA; (A.A.P.); (J.C.); (L.R.)
| | - Kamalesh K. Sirkar
- Otto York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA; (A.A.P.); (J.C.); (L.R.)
| |
Collapse
|
27
|
Mustakeem M, Qamar A, Alpatova A, Ghaffour N. Dead-end membrane distillation with localized interfacial heating for sustainable and energy-efficient desalination. WATER RESEARCH 2021; 189:116584. [PMID: 33161326 DOI: 10.1016/j.watres.2020.116584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/11/2020] [Accepted: 10/30/2020] [Indexed: 05/18/2023]
Abstract
Membrane distillation (MD) has the high potential to circumvent conventional desalination limitations in treating highly saline brines. However, the performance of MD is limited by its low thermal efficiencyand temperature polarization (TP) effect. Consequently, the driving force decreases when heat loss increases.In this study, we propose to minimize TP through localized heating where the thin feed channel was heated uniformly at the membrane-liquid interface without changing the properties of the membrane.This concept was further improved by implementing a new dead-end MD configuration. Investigated for the first time,this configuration eliminated circulation heat losses, which cannot be realized in conventional MD due to a rapid temperature stratification. In addition, the accumulation of foulants on the membrane surface was successfully controlled by intermittent flushing. 3-Dimensional conjugate heat transfer modeling revealedmore uniform heat transfer and temperature gradient across the membrane due to the increased feed water temperature over a larger membrane area. The increase of water vapor flux (45%) and the reduction of heat lossobserved in the new dead-end concept led to a decrease of the specific energy consumption by 57%, corresponding to a gain output ratio increase of about 132 %, compared to a conventional bulk heating, while preserving membrane integrity. A conjugate heat transfer model was deployed in ANSYS-Fluent framework to elucidate on the mechanism of flux enhancement associated with the proposed technique. This study provides a framework for future sustainable MD developmentby maintaining a stable vapor flux while minimizing energy consumption.
Collapse
Affiliation(s)
- Mustakeem Mustakeem
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), Thuwal23955-6900, Saudi Arabia
| | - Adnan Qamar
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), Thuwal23955-6900, Saudi Arabia
| | - Alla Alpatova
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), Thuwal23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), Thuwal23955-6900, Saudi Arabia.
| |
Collapse
|
28
|
Pan M, Tan YZ, Chew JW. Superior membrane distillation by induction heating of 3D rGO/Nafion/Ni foam for water treatment. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Anvari A, Azimi Yancheshme A, Kekre KM, Ronen A. State-of-the-art methods for overcoming temperature polarization in membrane distillation process: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118413] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Anvari A, Azimi Yancheshme A, Ronen A. Enhanced performance of membrane distillation using radio-frequency induction heated thermally conducting feed spacers. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Darabi Mahboub MJ, Jazayeri SM, Chub O, Dubois J, Patience GS. Oxidation kinetics of 2‐methyl‐1,3‐propanediol to methacrylic acid in a fluidized bed reactor. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Olga Chub
- Chemical Engineering Polytechnique Montréal Montréal Québec Canada
| | | | | |
Collapse
|
32
|
Tan YZ, Chandrakant SP, Ang JST, Wang H, Chew JW. Localized induction heating of metallic spacers for energy-efficient membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Landsman MR, Sujanani R, Brodfuehrer SH, Cooper CM, Darr AG, Davis RJ, Kim K, Kum S, Nalley LK, Nomaan SM, Oden CP, Paspureddi A, Reimund KK, Rowles LS, Yeo S, Lawler DF, Freeman BD, Katz LE. Water Treatment: Are Membranes the Panacea? Annu Rev Chem Biomol Eng 2020; 11:559-585. [DOI: 10.1146/annurev-chembioeng-111919-091940] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.g., wastewater, seawater, and produced water) is considered in the context of typical and emerging water quality goals. This review considers the effectiveness of current technologies (both conventional and membrane based), as well as the potential for recent advancements in membrane research to achieve these water quality goals. We envision the future of water treatment to integrate advanced membranes (e.g., mixed-matrix membranes, block copolymers) into smart treatment trains that achieve several goals, including fit-for-purpose water generation, resource recovery, and energy conservation.
Collapse
Affiliation(s)
- Matthew R. Landsman
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Rahul Sujanani
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Samuel H. Brodfuehrer
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Carolyn M. Cooper
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Addison G. Darr
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - R. Justin Davis
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyungtae Kim
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Soyoon Kum
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lauren K. Nalley
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Sheik M. Nomaan
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Cameron P. Oden
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Akhilesh Paspureddi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kevin K. Reimund
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lewis Stetson Rowles
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seulki Yeo
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Desmond F. Lawler
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lynn E. Katz
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
34
|
Membrane distillation: Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Blankert B, Vrouwenvelder JS, Witkamp GJ, Ghaffour N. Minimum Net Driving Temperature Concept for Membrane Distillation. MEMBRANES 2020; 10:membranes10050100. [PMID: 32422872 PMCID: PMC7281634 DOI: 10.3390/membranes10050100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 11/26/2022]
Abstract
In this study, we analyzed the heat requirement of membrane distillation (MD) to investigate the trade-off between the evaporation efficiency and driving force efficiency in a single effect MD system. We found that there exists a non-zero net driving temperature difference that maximizes efficiency. This is the minimum net driving temperature difference necessary for a rational operational strategy because below the minimum net driving temperature, both the productivity and efficiency can be increased by increasing the temperature difference. The minimum net driving temperature has a similar magnitude to the boiling point elevation (~0.5 °C for seawater), and depends on the properties of the membrane and the heat exchanger. The minimum net driving temperature difference concept can be used to understand the occurrence of optimal values of other parameters, such as flux, membrane thickness, and membrane length, if these parameters are varied in a way that consequently varies the net driving temperature difference.
Collapse
Affiliation(s)
- Bastiaan Blankert
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (G.-J.W.); (N.G.)
| | - Johannes S. Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (G.-J.W.); (N.G.)
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Correspondence: or ; Tel.: +966-8082180
| | - Geert-Jan Witkamp
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (G.-J.W.); (N.G.)
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (G.-J.W.); (N.G.)
| |
Collapse
|
36
|
Anvari A, Kekre KM, Ronen A. Scaling mitigation in radio-frequency induction heated membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117859] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Rice D, Ghadimi SJ, Barrios AC, Henry S, Walker WS, Li Q, Perreault F. Scaling Resistance in Nanophotonics-Enabled Solar Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2548-2555. [PMID: 31971783 DOI: 10.1021/acs.est.9b07622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study compares the scaling behavior of membrane distillation (MD) with that of nanophotonics-enabled solar membrane distillation (NESMD). Previous research has shown that NESMD, due to its localized surface heating driven by photothermal membrane coatings, is an energy-efficient system for off-grid desalination; however, concerns remained regarding the scaling behavior of self-heating surfaces. In this work, bench-scale experiments were performed, using model brackish water, to compare the scaling propensity of NESMD with MD. The results showed NESMD to be highly resistant to scaling; a three times higher salt concentration factor (c/c0) was achieved in NESMD compared to MD without any decline in flux. Analyses of the scaling layer on NESMD membranes revealed that salt deposition was 1/4 of that observed for MD. Scaling resistance in NESMD is attributed to its lower operating temperature, which increases the solubility of common scalants and decreases salt precipitation rates. Precipitation kinetics measurements revealed an order of magnitude faster precipitation under heated conditions (62 °C, k = 8.7 × 10-2 s-1) compared to ambient temperature (22 °C, k = 7.1 × 10-3 s-1). These results demonstrate a distinct advantage of NESMD over MD for the treatment of high scaling potential water, where scaling is a barrier to high water recovery.
Collapse
Affiliation(s)
- Douglas Rice
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe 85287-3005 , Arizona , United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment , Rice University , Houston 77005 , Texas , United States
| | - Shahrouz J Ghadimi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment , Rice University , Houston 77005 , Texas , United States
- Department of Civil Engineering , University of Texas at El Paso , El Paso 79968 , Texas , United States
| | - Ana C Barrios
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe 85287-3005 , Arizona , United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment , Rice University , Houston 77005 , Texas , United States
| | - Skyler Henry
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment , Rice University , Houston 77005 , Texas , United States
| | - W Shane Walker
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment , Rice University , Houston 77005 , Texas , United States
- Department of Civil Engineering , University of Texas at El Paso , El Paso 79968 , Texas , United States
| | - Qilin Li
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment , Rice University , Houston 77005 , Texas , United States
- Department of Civil and Environmental Engineering , Rice University , Houston 77005 , Texas , United States
| | - François Perreault
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe 85287-3005 , Arizona , United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment , Rice University , Houston 77005 , Texas , United States
| |
Collapse
|
38
|
Floros IN, Kouvelos EP, Pilatos GI, Hadjigeorgiou EP, Gotzias AD, Favvas EP, Sapalidis AA. Enhancement of Flux Performance in PTFE Membranes for Direct Contact Membrane Distillation. Polymers (Basel) 2020; 12:E345. [PMID: 32033433 PMCID: PMC7077436 DOI: 10.3390/polym12020345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
This work focused on enhancing the flux on hydrophobic polymeric membranes aimed for direct contact membrane distillation desalination (DCMD) process without compromising salt rejection efficiency. Successful coating of commercial porous poly-tetrafluoroethylene membranes with poly(vinyl alcohol) (PVA) was achieved by solution dipping followed by a cross-linking step. The modified membranes were evaluated for their performance in DCMD, in terms of water flux and salt rejection. A series of different PVA concentration dipping solutions were used, and the results indicated that there was an optimum concentration after which the membranes became hydrophilic and unsuitable for use in membrane distillation. Best performing membranes were achieved under the specific experimental conditions, water flux 12.2 L·m-2·h-1 [LMH] with a salt rejection of 99.9%. Compared to the pristine membrane, the flux was enhanced by a factor of 2.7. The results seemed to indicate that introducing hydrophilic characteristics in a certain amount to a hydrophobic membrane could significantly enhance the membrane distillation (MD) performance without compromising salt rejection.
Collapse
Affiliation(s)
- Ioannis N. Floros
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos P. Kouvelos
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Georgios I. Pilatos
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | | | - Anastasios D. Gotzias
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Evangelos P. Favvas
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Andreas A. Sapalidis
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| |
Collapse
|