1
|
Jiang Y, Wang S, Li C, Cai YA, Xiong X, Tang Y, Shao S, Wang C, Ng HY. Unraveling the mechanism of fouling mitigation in AGS-MBR system: From AGS properties to foulant interactions. WATER RESEARCH 2025; 279:123403. [PMID: 40068289 DOI: 10.1016/j.watres.2025.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 05/06/2025]
Abstract
Aerobic granular sludge (AGS) has demonstrated a lower fouling propensity than floc sludge in membrane bioreactors (MBRs) due to various hypotheses, including differences in particle size and the efficacy of physical scouring. However, controversy exists regarding the dominant cause of this lower fouling. Therefore, in this work, we systematically investigated the contribution of four potential mechanisms of AGS on membrane fouling alleviation in MBRs: 1) loosening cake layer; 2) scouring of the membrane surface; 3) regulating soluble microbial product (SMP) secretion; and 4) changing the rheology of the bulk solution. Our results showed that, regardless of granular size range, AGS hardly caused cake fouling due to its low hydraulic resistances (<0.8 × 1012 m-1) and limited accumulation on the membrane surface. Scouring by AGS was ineffective in reducing the thickness and hydraulic resistance of the fouling layer compared with granular activated carbon, a commonly used scouring material for MBRs. Furthermore, liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND) results indicated that the lower fouling was related to reduced SMP secretion by AGS, with an optimal particle size (800-1000 μm) at which SMP secretion was minimized. AGS with this optimal particle size secreted over 54 % less high-molecular-weight SMP compared to floc sludge. As granule size further increased, SMP secretion increased due to biomass decay and cell lysis resulting from substrate transfer limitations in granules. Moreover, compared to floc sludge, granular sludge bulk solution exhibited lower viscosity, particularly in the 450-1000 μm size range. This enhanced rheological behavior could potentially improve shear stress induced by aeration, thereby mitigating membrane fouling. These findings emphasize that the indirect effects of AGS, including reduced SMP secretion and improved rheological properties, played a crucial role in the lower membrane fouling in AGS-MBRs, while direct effects such as loosening cake layer and the scouring effect played minor roles.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Si Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chaoyu Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Yu-Ang Cai
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Xiuquan Xiong
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Yinghao Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Chuansheng Wang
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - How Yong Ng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
2
|
He H, Wang X, Huang X, Wang X, Zhu H, Chen F, Wu X, Wu H, Ma J, Wen X. Leveraging almost hydrophobic PVDF membrane and in-situ ozonation in O 3/UF/BAC system for superior anti-fouling and rejection performance in drinking water treatment. WATER RESEARCH 2025; 274:123105. [PMID: 39798531 DOI: 10.1016/j.watres.2025.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O3/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone. Consequently, the physicochemical properties of the PVDF membrane remained unchanged in the laboratory continuous flow experiment with in-situ ozonation at 2.86 mg/L. The almost hydrophobicity of the PVDF membrane not only resisted fouling but also facilitated the reaction between ozone and foulants of higher concentrations locally at membrane surface, leading to dynamic changes in membrane fouling, with TMP/TMP0 initially increasing, then decreasing and stable. Therefore, the Rtotal, Rcake and Rgel of the PVDF membrane decreased by 47.40 %, 46.79 % and 50.99 % as compared to the UF/BAC system, respectively, in the O3/UF/BAC system. In-situ ozonation transformed macromolecular substances into micromolecules, particularly organic matter with lignin/carboxylic-rich alicyclic molecules and aromatic structures. The majority of these micromolecules were either rejected by the deposited foulants layer through Van der Waals interaction and utilized as a carbon source by membrane surface microorganisms (eg., Curvibacter and Methyloversatilis), or further degraded by microorganism in the BAC unit. This resulted in a 19.34 % and 40.58 % reduction in CODMn concentrations in the UF and BAC effluents, respectively. The system's anti-fouling and water purification performance observed in laboratory experiments was confirmed in a pilot test, providing new insights into the use of in-situ ozonation and organic membranes.
Collapse
Affiliation(s)
- Haiyang He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Fengxiang Chen
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Xianzhi Wu
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Huifeng Wu
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Zhang C, Yuan R, Chen H, Zhou B, Cui Z, Zhu B. Advancements in Inorganic Membrane Filtration Coupled with Advanced Oxidation Processes for Wastewater Treatment. Molecules 2024; 29:4267. [PMID: 39275114 PMCID: PMC11397059 DOI: 10.3390/molecules29174267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Membrane filtration is an effective water recycling and purification technology to remove various pollutants in water. Inorganic membrane filtration (IMF) technology has received widespread attention because of its unique high temperature and corrosion resistance. Commonly used inorganic membranes include ceramic membranes and carbon-based membranes. As novel catalytic inorganic membrane processes, IMF coupled with advanced oxidation processes (AOPs), can realize the separation and in situ degradation of pollutants, thus mitigating membrane contamination. In this paper, the types and performance of IMF are discussed. The influencing factors of inorganic membranes in practical wastewater treatment are summarized. The applications, advantages, and disadvantages of the coupled process of IMF and AOPs are summarized and outlined. Finally, the challenges and prospects of IMF and IMF coupled with AOPs are presented, respectively. This contributes to the design and development of coupled systems of membrane filtration with inorganic materials and IMF coupled with AOPs for practical wastewater treatment.
Collapse
Affiliation(s)
- Chaoying Zhang
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zexin Cui
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Boyun Zhu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Liu Y, Yuan Y, Wang Y, Ngo HH, Wang J. Research and application of active species based on high-valent iron for the degradation of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171430. [PMID: 38458457 DOI: 10.1016/j.scitotenv.2024.171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Fe(VI), as a new green treatment agent, has two indispensable processes in water treatment: coagulation and oxidation. Fe(VI) has a strong oxidation ability. The intermediate iron species (Fe(V) and Fe(IV)) and reactive radical species (H2O2, •OH, and O2•-) produced by decomposition and reduction reaction have strong oxidation ability, in addition, the hydrolyzed product formed in situ with core (γ-Fe2O3)-shell (γ-FeOOH) structure also has good coagulation effect. Because Fe(VI) is easy to decompose and challenging to preserve, it limits the application and sometimes significantly reduces the subsequent processing effect. How to make Fe(VI) more efficient use is a hot spot in current research. This article summarizes the distribution of active substances during the hydrolysis of Fe(VI), distinguish the differences mechanisms in the similar regulation methods, reviews the current preparation methods of Fe(VI), and finally reviews the applications of Fe(VI) in the field of environmental remediation.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Zhao F, Zhou Z. Coupling pretreatment of ultraviolet/ferrate (UV/Fe(vi)) for improving the ultrafiltration of natural surface water. RSC Adv 2024; 14:1360-1366. [PMID: 38174279 PMCID: PMC10763611 DOI: 10.1039/d3ra05582e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Ultrafiltration (UF) is a high-potential technology for purifying natural surface water; however, the problem of membrane fouling has limited its widespread application. Herein, ultraviolet (UV)-activated ferrate (Fe(vi)) was used to purify natural surface water and improve the performance of the UF membrane. The combination of UV and Fe(vi) could generate active species (Fe(v), Fe(iv), ˙OH and O2˙-) to degrade pollutants, while the in situ produced Fe(iii) had the effect of coagulation. With the above action, pollutants were removed, and the pollution load of natural surface water was reduced. After treatment with the UV/Fe(vi) system, dissolved organic carbon was reduced by 49.38%, while UV254 was reduced by 45.00%. The removal rate was further increased to 54.88% and 51.67% after UF treatment. In addition, the fluorescent organics were reduced by 44.22%, and the molecular weight of the organics became smaller. In the stage of UF, the terminal J/J0 was increased from 0.61 to 0.92, and the membrane fouling resistance was decreased by 85.94%. The analysis of the membrane fouling mechanism indicates that the role of cake filtration was weakened among all the mechanisms. Fourier transform infrared spectroscopy showed that less pollutants were accumulated on the membrane surface, and scanning electron microscopy revealed that the membrane pore blockage was relieved. In summary, the UV/Fe(vi) co-treatment process proposed in this study can significantly improve the purification efficiency of the UF systems in natural surface water treatment.
Collapse
Affiliation(s)
- Fuwang Zhao
- School of Energy and Environment, Zhong Yuan University of Technology Zhengzhou 450007 China
| | - Zhiwei Zhou
- College of Architecture & Civil Engineering, Faculty of Urban Construction, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
6
|
Zhang B, Shen J, Mao X, Zhang B, Shen Y, Shi W. A novel membrane bioreactor inoculated with algal-bacterial granular sludge for sewage reuse and membrane fouling mitigation: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122194. [PMID: 37453682 DOI: 10.1016/j.envpol.2023.122194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, a novel membrane bioreactor (MBR) inoculated with algal-bacterial granular sludge (ABGMBR) was established to improve pollutant removal and alleviate membrane fouling. The ABGMBR system showed higher pollutant removal rate and longer operation time (152 day) compared to the control MBR (AGMBR). Moreover, the contents of the pollutants such as granular sludges, extracellular polymeric substances (EPS), and soluble microbial products on the membrane were remarkably reduced, leading to the formation of a porous and loose cake layer on the membrane and a slow increase in transmembrane pressure. Standard blocking was the main mechanism of membrane fouling; however, the membrane pore blockage was significantly reduced in ABGMBR. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory suggested that the aggregation and adhesion of foulants on the membrane were greatly inhibited in ABGMBR. Furthermore, correlation analysis showed significant differences in membrane fouling characteristics between AGMBR and ABGMBR. The ABGMBR system effectively retarded sludge disintegration and increased the repulsion between the sludge and membrane owing to the favorable mixed liquor characteristics. This study showcases the superior operational efficiency and anti-fouling performance of ABGMBR, offering a novel perspective on sewage reuse and membrane fouling mitigation.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing, 409003, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China.
| | - Jing Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xin Mao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing, 409003, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
7
|
Fan JH, Yao ZL, Wu DL, Liu X, Ma LM. Pilot-scale study on an advanced Fe-Cu process for refractory wastewater pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131756. [PMID: 37270966 DOI: 10.1016/j.jhazmat.2023.131756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The extreme pH, high color, and poor biodegradability of refractory wastewater have severe impacts on its biological treatment. To address this issue, an advanced Fe-Cu process with redox reaction and spontaneous coagulation was investigated and applied for pilot-scale (wastewater flow rate of 2000 m3·day-1) pretreatment of separately discharged acidic chemicals and alkaline dyeing wastewater. The advanced Fe-Cu process had five functions: (1) increasing the pH of chemical wastewater to 5.0 and above, with an influent pH of approximately 2.0; (2) transforming refractory organics of chemical wastewater with 10.0% chemical oxygen demand (COD) and 30.8% color removal, thereby enhancing the ratio of biological oxygen demand after five days (BOD5) to COD (B/C) from 0.21 to 0.38; (3) neutralizing the pH of the pretreated chemical wastewater for coagulation application with alkaline dyeing wastewater to avoid adding alkaline chemical; (4) achieving average nascent Fe(II) concentrations of 925.6 mg∙L-1 using Fe-Cu internal electrolysis for mixed wastewater coagulation, resulting in an average of 70.3% color removal and 49.5% COD removal; (5) providing more efficient COD removal and B/C enhancement than FeSO4∙7 H2O coagulation while avoiding secondary pollution. The green process offers an effective, easy-implemented solution for the pretreatment of separately discharged acidic and alkaline refractory wastewater.
Collapse
Affiliation(s)
- Jin-Hong Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China.
| | - Zhen-Long Yao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China
| | - De-Li Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Xia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China
| | - Lu-Ming Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
He H, Wang L, Liu Y, Qiu W, Liu Z, Ma J. Improvement of Fe(VI) oxidation by NaClO on degrading phenolic substances and reducing DBPs formation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161080. [PMID: 36574852 DOI: 10.1016/j.scitotenv.2022.161080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Ferrate(VI) is a green oxidant and can effectively oxidize micropollutants. However, the instability of Fe(VI), i.e., self-decomposition, in the aqueous solution limited its application. Herein, it was found that the degradation of phenolic substances had been substantially improved through the combination of Fe(VI) with NaClO. At the condition of pH 8.0, 50 μM of Fe(VI) degraded 18.66 % of BPA (bisphenol A) at 0.5 min or 21.67 % of phenol at 2 min. By contrast, Fe(VI)/NaClO (50/10 μM) oxidized 38.21 % of BPA at 0.5 min or 38.08 % of phenol at 2 min with a synergistic effect. At the end of the reaction, the concentration of Fe(VI) in Fe(VI)/NaClO (50/10 μM) was 28.97 μM for BPA degradation, higher than the 25.62 μM of Fe(VI) group. By active species analysis, intermediate iron species [i.e., Fe(V) and Fe(IV)] played a vital role in the synergistic effect in Fe(VI)/NaClO system, which would react with the applied NaClO to regenerate Fe(VI). In natural water, the Fe(VI)/NaClO could also degrade phenolic substances of natural organic matter (NOM). Although the NaClO reagent was applied, disinfection by-products (DBPs) formation potential decreased by 22.75 % of the raw sample after Fe(VI)/NaClO treatment. Significantly, THMs, mainly caused by phenolic substances of NOM, even declined by 29.18 % of raw sample. Based on that, this study explored a novel ferrate(VI) oxidation system using the cheap NaClO reagent, which would present a new insight on ferrate(VI) application.
Collapse
Affiliation(s)
- Haiyang He
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Yulei Liu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| | - Zhicen Liu
- School of Geosciences, The University of Edinburgh, Edinburgh EH8 9JU, United Kingdom of Great Britain and Northern Ireland
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
9
|
Lian J, Cheng X, Zhu X, Luo X, Xu J, Tan F, Wu D, Liang H. Mutual activation between ferrate and calcium sulfite for surface water pre-treatment and ultrafiltration membrane fouling control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159893. [PMID: 36336042 DOI: 10.1016/j.scitotenv.2022.159893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In this work, ferrate (Fe(VI)) and calcium sulfite (CaSO3) were combined to treat surface water for improving ultrafiltration (UF) performance. During the pre-treatment process, the Fe(VI) and CaSO3 activated each other and a variety of active species (Fe(V), Fe(IV), OH, SO4-, 1O2, etc.) were generated. All of the five fluorescent components were effectively eliminated to different extents. With Fe(VI)/CaSO3 = 0.05/0.15 mM, the dissolved organic carbon and UV254 reduced by 44.33 % and 50.56 %, respectively. After UF, these values were further decreased with the removal rate of 50.27 % and 70.79 %. In the UF stage, the terminal J/J0 increased to 0.42 from 0.17, with the reversible and irreversible fouling decreased by 67.08 % and 79.45 % at most. The membrane pore blocking was significantly mitigated, as well as the foulants deposition on membrane surfaces was decreased to some extent. The complete blocking was altered to standard blocking and intermediate blocking, the volume when entering cake filtration was also delayed slightly. The extended Derjaguin-Landau-Verwey-Overbeek theory was employed to judge the interface fouling behavior, and the results indicated that the foulants became more hydrophilic, as well as the adhesion trend between foulants and membrane surface was weakened. Overall, these results provide a theoretical foundation for the practical application of the combined Fe(VI)/CaSO3-UF process in surface water purification.
Collapse
Affiliation(s)
- Jinchuan Lian
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
10
|
He H, Liu Y, Wang L, Qiu W, Liu Z, Ma J. Novel activated system of ferrate oxidation on organic substances degradation: Fe(VI) regeneration or Fe(VI) reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Ji B, Bilal Asif M, Zhang Z. Photothermally-activated peroxymonosulfate (PMS) pretreatment for fouling alleviation of membrane distillation of surface water: Performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Lian J, Zhang L, Tan F, Xu J, Mu R, Wu D, Liang H, Cheng X. Enhancing ultrafiltration of algal-rich water using ferrate activated with sodium percarbonate: Foulants variation, membrane fouling alleviation, and collaborative mechanism. CHEMOSPHERE 2022; 308:136377. [PMID: 36088980 DOI: 10.1016/j.chemosphere.2022.136377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Ultrafiltration (UF) is a reliable method to treat algal-rich water, whereas severe membrane fouling has impeded its actual application. To improve UF performance and alleviate membrane fouling resulted by algal foulants, a novel strategy coupling ferrate (Fe(VI)) and sodium percarbonate (SPC) was proposed. During the coupling process, Fe(VI) was activated by SPC to generate high-valent Fe intermediates (Fe(V) and Fe(IV)), which played a crucial role in high-efficiency oxidation for algal foulants, and the in-situ formed Fe(III) particles decomposed by Fe(VI) also enhanced the coagulation and adsorption capacity to the coupling system. Under the triple effects of coagulation, adsorption and oxidation, the algal foulants were efficiently eliminated. The zeta potential increased from -32.70 mV to -6.56 mV at most, the particle size was significantly enlarged, and the generated flocs possessed a great settleability. The morphology, viability, and integrity of algae cells were effectively maintained. The dissolved organic matters and fluorescent organics were efficiently removed, as well as macromolecular organics were reduced into lower molecular weight components. With the collaborative effect of Fe(VI) and SPC, the terminal specific flux was increased from 0.29 to 0.92, and the reversible and irreversible fouling resistances were reduced by 98.5% and 69.4%, individually. The surface functional groups were changed, and the dominant mechanisms were also converted to pore blocking from cake layer filtration. Overall, the experimental results would provide some new thoughts in actual production for algal-rich water treatment and UF membrane fouling alleviation.
Collapse
Affiliation(s)
- Jinchuan Lian
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| |
Collapse
|
13
|
Ding A, Ren Z, Hu L, Zhang R, Ngo HH, Lv D, Nan J, Li G, Ma J. Oxidation and coagulation/adsorption dual effects of ferrate (VI) pretreatment on organics removal and membrane fouling alleviation in UF process during secondary effluent treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157986. [PMID: 35963402 DOI: 10.1016/j.scitotenv.2022.157986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Ultrafiltration (UF) has been widely used in water and advanced sewage treatment. Unfortunately, membrane fouling is still the main obstacle to further improvement in the system. Fe (III) salt, a type of traditional coagulant, is often applied to mitigate UF membrane fouling. However, low molecule organic weight cannot be effectively removed, thus the water quality after single coagulation treatment does not effectively meet the standard of subsequent water reuse during secondary effluent treatment. Recently, it has been found that potassium ferrate (Fe (VI)) has multiple functions of oxidation, sterilization and coagulation, with other studies proving its good performance in organics removal and membrane fouling mitigation. However, the respective contributions of oxidation and coagulation/adsorption have not yet been fully understood. The oxidation and coagulation/adsorption effects of Fe (VI) during membrane fouling mitigation were investigated here. The oxidation effect of Fe (VI) was the main reason for organics with the MW of 8-20 kDa removal, and its coagulation/adsorption mainly accounted for the smaller amounts of molecular organics removed. The oxidation of Fe (VI) was the main method for overcoming membrane fouling in the initial filtration; it largely alleviated the standard blockage. The formation of a cake layer transformed the main membrane fouling alleviation mechanism from oxidation to coagulation/adsorption and further removed smaller amounts of molecule organics with the increase of filtration cycles and Fe (VI) dosages. The main fouling mechanism altered from standard blocking and cake filtration to only cake filtration after Fe (VI) treatment. Overall, the mechanism of the oxidation and coagulation/adsorption of Fe (VI) were differentiated, and would provide a reference for future Fe (VI) pretreatment in UF membrane fouling control during water and wastewater treatments.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Zixiao Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lei Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rourou Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Dongwei Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
14
|
Pan Z, Xu S, Xin H, Yuan Y, Xu R, Wang P, Yan X, Fan X, Song C, Wang T. High performance polypyrrole coated carbon-based electrocatalytic membrane for organic contaminants removal from aqueous solution. J Colloid Interface Sci 2022; 626:283-295. [DOI: 10.1016/j.jcis.2022.06.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
|
15
|
Facile tailoring molecular sieving effect of PIM-1 by in-situ O3 treatment for high performance hydrogen separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Zhao J, Jiang W, Wang H, Zhang H, Wang J, Yang J, Lin D, Liang H. Ferrate-enhanced electrocoagulation/ultrafiltration system on municipal secondary effluent treatment: Identify synergistic contribution of coagulant and oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Dong Y, Wu H, Yang F, Gray S. Cost and efficiency perspectives of ceramic membranes for water treatment. WATER RESEARCH 2022; 220:118629. [PMID: 35609431 DOI: 10.1016/j.watres.2022.118629] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
More robust ceramic membranes with tailorable structures and functions are increasingly employed for water treatment, particularly in some harsh applications for their ultra-long service lifespan due to their high mechanical, structural, chemical and thermal stability and anti-fouling properties. Decreasing cost and enhancing efficiency are two key but quite challenging application-oriented issues for broader and larger-scale engineering application of current ceramic membranes, and are required to make ceramic membranes a highly efficient and economic water treatment technique. In this review, we critically discuss these two significant concerns of both cost and efficiency for water treatment ceramic membranes, focusing on an overview of various advanced strategies and mechanism insights. A brief up-to-date discussion is first introduced about recent developments of ceramic membranes covering the major advances of novel membranes and applications. Then some promising strategies for decreasing the cost of ceramic membranes are discussed, including membrane material cost and processing cost. To fully address the issue of moderate efficiency with single separation function, valuable and considerable insights are provided into recent major progress and mechanism understandings in application with other unit processes, such as advanced oxidation and electrochemistry techniques, to significantly enhance treatment efficiency. Subsequently, a review of recent ceramic membrane applications emphasizing harsh operating environments is presented, such as oil-water separation, saline water, refractory organic and emerging contaminant wastewater treatment. Finally, engineering application, conclusions, and future perspectives of ceramic membrane for water treatment applications are critically discussed offering new insight based on understanding the issues of cost and efficiency.
Collapse
Affiliation(s)
- Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Hui Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Stephen Gray
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, Australia
| |
Collapse
|
18
|
Oxidation-biotreatment-membrane combined process for external reuse of shale gas wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Incorporating catalytic ceramic membrane into the integrated process of in situ ozonation, membrane filtration and biological degradation: Enhanced performance and underlying mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Dang X, Yu Z, Yang M, Woo MW, Song Y, Wang X, Zhang H. Sustainable electrochemical synthesis of natural starch-based biomass adsorbent with ultrahigh adsorption capacity for Cr(VI) and dyes removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120668] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Pan Z, Xin H, Xu S, Xu R, Wang P, Yuan Y, Fan X, Song Y, Song C, Wang T. Preparation and performance of polyaniline modified coal-based carbon membrane for electrochemical filtration treatment of organic wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Tang P, Liu B, Xie W, Wang P, He Q, Bao J, Zhang Y, Zhang Z, Li J, Ma J. Synergistic mechanism of combined ferrate and ultrafiltration process for shale gas wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Song T, Fu W, Liu S, Zhang X. Integration of coagulation and ozonation with flat-sheet ceramic membrane filtration for shale gas hydraulic fracturing wastewater treatment: A laboratory study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2298-2307. [PMID: 34216175 DOI: 10.1002/wer.1605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The performance of the integrated process of coagulation and ozonation with ceramic membrane filtration was evaluated for the treatment of shale gas hydraulic fracturing flowback wastewater (HFFW). The removal efficiencies of carbon oxygen demand (CODCr ), dissolved organic carbon (DOC), petroleum oils, and turbidity in effluent by the combined process were 87.1%, 72.2%, 94.3%, and 99.6%, respectively. Compared with sole membrane filtration, the transmembrane pressure (TMP) of ceramic membrane filtration was reduced by >99% with the integrated process. The coagulation and ozonation can effectively remove the organics with high molecular weights in the cake layer of ceramic membrane. To the best of our knowledge, this work proposed the combined process of coagulation, ozonation, and flat-sheet ceramic membrane filtration for the treatment of HFFW for the first time. The water quality of the effluent met the discharge standard (Comprehensive Wastewater Discharge Standard GB8978-1996). The findings can provide an important technical foundation for the innovation of integrated equipment for HFFW treatment. PRACTITIONER POINTS: An integrated process combining coagulation and ozonation with flat-sheet ceramic membrane ultrafiltration for the treatment of shale gas wastewater. The water quality of this integrated process met the discharge standard. Coagulation and ozonation effectively alleviated the membrane fouling related to organics with high molecular weights. A new avenue for on-site treatment of shale gas wastewater and an alternative of the current centralized wastewater management.
Collapse
Affiliation(s)
- Tiantian Song
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Wanyi Fu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Shaohui Liu
- Zhangjiagang Huayuan Environmental Science and Technology Co., Ltd., Zhangjiagang, China
| | - Xihui Zhang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
24
|
Asif MB, Ren B, Li C, He K, Zhang X, Zhang Z. Understanding the role of in-situ ozonation in Fe(II)-dosed membrane bioreactor (MBR) for membrane fouling mitigation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Mu H, Qiu Q, Cheng R, Qiu L, Xie K, Gao M, Liu G. Adsorption-Enhanced Ceramic Membrane Filtration Using Fenton Oxidation for Advanced Treatment of Refinery Wastewater: Treatment Efficiency and Membrane-Fouling Control. MEMBRANES 2021; 11:membranes11090651. [PMID: 34564468 PMCID: PMC8467550 DOI: 10.3390/membranes11090651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022]
Abstract
With the development of the refining industry, the treatment of refinery wastewater has become an urgent problem. In this study, a ceramic membrane (CM) was combined with Fenton-activated carbon (AC) adsorption to dispose of refinery wastewater. The effect of the combined process was analyzed using excitation-emission matrix (EEM), ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopies (FTIR). Compared with direct filtration, the combined process could significantly improve the removal of organic pollution, where the removal rate of the COD and TOC could be 70% and the turbidity removal rate was above 97%. It was found that the effluent could meet the local standards. In this study, the membrane fouling was analyzed for the impact of the pretreatment on the membrane direction. The results showed that Fenton-AC absorption could effectively alleviate membrane fouling. The optimal critical flux of the combined process was increased from 60 to 82 L/(m2·h) compared with direct filtration. After running for about 20 d, the flux remained at about 55 L/(m2·h) and the membrane-fouling resistance was only 1.2 × 1012 m-1. The Hermia model revealed that cake filtration was present in the early stages of the combined process. These results could be of great use in improving the treatment efficiency and operation cycle of refinery wastewater.
Collapse
Affiliation(s)
- Haotian Mu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; (H.M.); (R.C.); (K.X.); (M.G.)
| | - Qi Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China;
| | - Renzhen Cheng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; (H.M.); (R.C.); (K.X.); (M.G.)
| | - Liping Qiu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; (H.M.); (R.C.); (K.X.); (M.G.)
- Research Center for Functional Material & Water Purification Engineering of Shandong Province, Jinan 250022, China
- Correspondence: (L.Q.); (G.L.)
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; (H.M.); (R.C.); (K.X.); (M.G.)
- Research Center for Functional Material & Water Purification Engineering of Shandong Province, Jinan 250022, China
| | - Mingchang Gao
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; (H.M.); (R.C.); (K.X.); (M.G.)
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; (H.M.); (R.C.); (K.X.); (M.G.)
- Research Center for Functional Material & Water Purification Engineering of Shandong Province, Jinan 250022, China
- Correspondence: (L.Q.); (G.L.)
| |
Collapse
|
26
|
UF fouling behavior of allelopathy of extracellular organic matter produced by mixed algae co-cultures. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Evaluating the impacts of a high concentration of powdered activated carbon in a ceramic membrane bioreactor: Mixed liquor properties, hydraulic performance and fouling mechanism. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|