1
|
Ye J, Xia L, Li H, de Arquer FPG, Wang H. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402090. [PMID: 38776138 DOI: 10.1002/adma.202402090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Vanadium redox flow batteries (VRFB) are a promising technology for large-scale storage of electrical energy, combining safety, high capacity, ease of scalability, and prolonged durability; features which have triggered their early commercial implementation. Furthering the deployment of VRFB technologies requires addressing challenges associated to a pivotal component: the membrane. Examples include vanadium crossover, insufficient conductivity, escalated costs, and sustainability concerns related to the widespread adoption of perfluoroalkyl-based membranes, e.g., perfluorosulfonic acid (PFSA). Herein, recent advances in high-performance and sustainable membranes for VRFB, offering insights into prospective research directions to overcome these challenges, are reviewed. The analysis reveals the disparities and trade-offs between performance advances enabled by PFSA membranes and composites, and the lack of sustainability in their final applications. The potential of PFSA-free membranes and present strategies to enhance their performance are discussed. This study delves into vital membrane parameters to enhance battery performance, suggesting protocols and design strategies to achieve high-performance and sustainable VRFB membranes.
Collapse
Affiliation(s)
- Jiaye Ye
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Huiyun Li
- Center for Automotive Electronics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
2
|
Advancements in Polyelectrolyte Membrane Designs for Vanadium Redox Flow Battery (VRFB). RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
3
|
Utilization of novel alginate membranes developed for quinone based aqueous redox flow batteries. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
4
|
Liu J, Long J, Huang W, Xu W, Qi X, Li J, Zhang Y. Enhanced proton selectivity and stability of branched sulfonated polyimide membrane by hydrogen bonds construction strategy for vanadium flow battery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Zarei-Jelyani M, Loghavi MM, Babaiee M, Eqra R. The significance of charge and discharge current densities in the performance of vanadium redox flow battery. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Do XH, Abbas S, Ikhsan MM, Choi SY, Ha HY, Azizi K, Hjuler HA, Henkensmeier D. Membrane Assemblies with Soft Protective Layers: Dense and Gel-Type Polybenzimidazole Membranes and Their Use in Vanadium Redox Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2206284. [PMID: 36319463 DOI: 10.1002/smll.202206284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Polybenzimidazole (PBI) membranes show excellent chemical stability and low vanadium crossover in vanadium redox flow batteries (VRFBs), but their high resistance is challenging. This work introduces a concept, membrane assemblies of a highly selective 2 µm thin PBI membrane between two 60 µm thick highly conductive PBI gel membranes, which act as soft protective layers against external mechanical forces and astray carbon fibers from the electrode. The soft layers are produced by casting phosphoric acid solutions of commercial PBI powder into membranes and exchanging the absorbed acid into sulfuric acid. A conductivity of 565 mS cm-1 is achieved. A stability test indicates that gel mPBI and dense PBI-OO have higher stability than dense mPBI and dense py-PBI, and gel/PBI-OO/gel is successfully tested for 1070 cycles (ca. 1000 h) at 100 mA cm-2 in the VRFB. The initial energy efficiency (EE) for the first 50 cycles is 90.5 ± 0.2%, and after a power outage stabilized at 86.3 ± 0.5% for the following 500 cycles. The initial EE is one of the highest published so far, and the materials cost for a membrane assembly is 12.35 U.S. dollars at a production volume of 5000 m2 , which makes these membranes very attractive for commercialization.
Collapse
Affiliation(s)
- Xuan Huy Do
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Saleem Abbas
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Muhammad Mara Ikhsan
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Seung-Young Choi
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, Lund, 221 00, Sweden
| | - Heung Yong Ha
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Kobra Azizi
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Hans Aage Hjuler
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Dirk Henkensmeier
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| |
Collapse
|
7
|
Preactivated zeolite nanosheet plate-tiled membrane on porous PVDF film: Synthesis and study of proton-selective ion conduction. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Maurya S, Diaz Abad S, Park EJ, Ramaiyan K, Kim YS, Davis BL, Mukundan R. Phosphoric acid pre-treatment to tailor polybenzimidazole membranes for vanadium redox flow batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Mu T, Tang W, Shi N, Wang G, Wang T, Wang T, Yang J. Novel ether-free membranes based on poly(p-terphenylene methylimidazole) for vanadium redox flow battery applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
TiO 2 Containing Hybrid Composite Polymer Membranes for Vanadium Redox Flow Batteries. Polymers (Basel) 2022; 14:polym14081617. [PMID: 35458366 PMCID: PMC9026947 DOI: 10.3390/polym14081617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, vanadium redox flow batteries (VRFB) have captured immense attraction in electrochemical energy storage systems due to their long cycle life, flexibility, high-energy efficiency, time, and reliability. In VRFB, polymer membranes play a significant role in transporting protons for current transmission and act as barriers between positive and negative electrodes/electrolytes. Commercial polymer membranes (such as Nafion) are the widely used IEM in VRFBs due to their outstanding chemical stability and proton conductivity. However, the membrane cost and increased vanadium ions permeability limit its commercial application. Therefore, various modified perfluorinated and non-perfluorinated membranes have been developed. This comprehensive review primarily focuses on recent developments of hybrid polymer composite membranes with inorganic TiO2 nanofillers for VRFB applications. Hence, various fabrications are performed in the membrane with TiO2 to alter their physicochemical properties for attaining perfect IEM. Additionally, embedding the -SO3H groups by sulfonation on the nanofiller surface enhances membrane proton conductivity and mechanical strength. Incorporating TiO2 and modified TiO2 (sTiO2, and organic silica modified TiO2) into Nafion and other non-perfluorinated membranes (sPEEK and sPI) has effectively influenced the polymer membrane properties for better VRFB performances. This review provides an overall spotlight on the impact of TiO2-based nanofillers in polymer matrix for VRFB applications.
Collapse
|
11
|
A Chemistry and Microstructure Perspective on Ion‐Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Wang Z, Zhang S, Liu Q, Chen Y, Weng Z, Jian X. Preparation and characterization of the side-chain quaternized poly(phthalazinone ether ketone)s with phenyl groups for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Xiong P, Zhang L, Chen Y, Peng S, Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:24770-24798. [PMID: 34165884 DOI: 10.1002/anie.202105619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuyue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
Long J, Xu W, Xu S, Liu J, Wang Y, Luo H, Zhang Y, Li J, Chu L. A novel double branched sulfonated polyimide membrane with ultra-high proton selectivity for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Zhang D, Xin L, Xia Y, Dai L, Qu K, Huang K, Fan Y, Xu Z. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Düerkop D, Widdecke H, Schilde C, Kunz U, Schmiemann A. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review. MEMBRANES 2021; 11:214. [PMID: 33803681 PMCID: PMC8003036 DOI: 10.3390/membranes11030214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995-2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.
Collapse
Affiliation(s)
- Dennis Düerkop
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Hartmut Widdecke
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Carsten Schilde
- Institute of Particle Technology, Braunschweig University of Technology, Volkmaroder Straße 5, 38100 Braunschweig, Germany;
| | - Ulrich Kunz
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany;
| | - Achim Schmiemann
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| |
Collapse
|
17
|
Duburg JC, Azizi K, Primdahl S, Hjuler HA, Zanzola E, Schmidt TJ, Gubler L. Composite Polybenzimidazole Membrane with High Capacity Retention for Vanadium Redox Flow Batteries. Molecules 2021; 26:molecules26061679. [PMID: 33802845 PMCID: PMC8002762 DOI: 10.3390/molecules26061679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, energy storage technologies are becoming essential in the transition of replacing fossil fuels with more renewable electricity production means. Among storage technologies, redox flow batteries (RFBs) can represent a valid option due to their unique characteristic of decoupling energy storage from power output. To push RFBs further into the market, it is essential to include low-cost materials such as new generation membranes with low ohmic resistance, high transport selectivity, and long durability. This work proposes a composite membrane for vanadium RFBs and a method of preparation. The membrane was prepared starting from two polymers, meta-polybenzimidazole (6 μm) and porous polypropylene (30 μm), through a gluing approach by hot-pressing. In a vanadium RFB, the composite membrane exhibited a high energy efficiency (~84%) and discharge capacity (~90%) with a 99% capacity retention over 90 cycles at 120 mA·cm-2, exceeding commercial Nafion® NR212 (~82% efficiency, capacity drop from 90% to 40%) and Fumasep® FAP-450 (~76% efficiency, capacity drop from 80 to 65%).
Collapse
Affiliation(s)
- Jacobus C. Duburg
- Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; (J.C.D.); (T.J.S.); (L.G.)
| | - Kobra Azizi
- Blue World Technologies, Egeskovvej 6C, DK-3490 Kvistgård, Denmark; (K.A.); (S.P.); (H.A.H.)
| | - Søren Primdahl
- Blue World Technologies, Egeskovvej 6C, DK-3490 Kvistgård, Denmark; (K.A.); (S.P.); (H.A.H.)
| | - Hans Aage Hjuler
- Blue World Technologies, Egeskovvej 6C, DK-3490 Kvistgård, Denmark; (K.A.); (S.P.); (H.A.H.)
- Danish Center for Energy Storage, Frederiksholms Kanal 30, DK-1220 Copenhagen K, Denmark
| | - Elena Zanzola
- Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; (J.C.D.); (T.J.S.); (L.G.)
- Correspondence: ; Tel.: +41-56-310-4738
| | - Thomas J. Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; (J.C.D.); (T.J.S.); (L.G.)
- Laboratory for Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Lorenz Gubler
- Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; (J.C.D.); (T.J.S.); (L.G.)
| |
Collapse
|
18
|
Domhoff A, Martin TB, Silva MS, Saberi M, Creager S, Davis EM. Enhanced Proton Selectivity in Ionomer Nanocomposites Containing Hydrophobically Functionalized Silica Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Allison Domhoff
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Tyler B. Martin
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Mayura S. Silva
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Mansour Saberi
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephen Creager
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Eric M. Davis
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
19
|
Lee W, Park G, Chang D, Kwon Y. The effects of temperature and membrane thickness on the performance of aqueous alkaline redox flow batteries using napthoquinone and ferrocyanide as redox couple. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0669-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Che X, Zhao H, Ren X, Zhang D, Wei H, Liu J, Zhang X, Yang J. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118359] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Aili D, Henkensmeier D, Martin S, Singh B, Hu Y, Jensen JO, Cleemann LN, Li Q. Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00080-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Wu J, Dai Q, Zhang H, Li X. Recent Development in Composite Membranes for Flow Batteries. CHEMSUSCHEM 2020; 13:3805-3819. [PMID: 32356616 DOI: 10.1002/cssc.202000633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Flow batteries (FBs) are one of the most attractive candidates for stationary energy storage and vital in realizing the wide application of renewable energies. Membranes play an important role in isolating redox couples while transporting ions to close the internal electrical circuit. Therefore, membranes with high selectivity and conductivity are highly important. Among different membranes, a composite membrane with independent design of support layer and thin selective top layer becomes one of the most promising candidates to break the trade-off between selectivity and conductivity. In this Review, recent studies on composite membranes for FBs and the principles of membrane design in different systems are discussed and summarized. Finally, the future direction on membrane design for different FBs is presented, which will provide an extensive, comprehensive reference to design and construct high-performance composite membranes for FBs.
Collapse
Affiliation(s)
- Jine Wu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, 380 Huaibei Zhuang, Beijing, 100049, P.R. China
| | - Qing Dai
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, 380 Huaibei Zhuang, Beijing, 100049, P.R. China
| | - Huamin Zhang
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| |
Collapse
|