1
|
Wu Q, Li D, Liu J, Long S, Huang Y, Li X. Antifouling PTFE Hollow Fiber Microfiltration Membrane with a Double-Defense Mechanism. NANO LETTERS 2025; 25:7081-7088. [PMID: 40249846 DOI: 10.1021/acs.nanolett.5c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Polytetrafluorethylene (PTFE) is the preferred material for highly polluted wastewater treatment. Hydrophilic modification of the PTFE hollow fiber membrane can further enhance its filtration performance and durability. Yet, it still remains a challenge to construct a robust hydrophilic coating on the PTFE surface. Here we report a surface engineering strategy of in situ coating a PTFE hollow fiber membrane with poly(vinyl alcohol) (PVA) and polyion complex (PIC) double-layer (DL) hydrogels. The first PVA hydrogel layer was covalently bonded to N-β-(aminoethyl)-γ-aminopropyl trimethoxysilane (AEAPTS)-grafted PTFE via a glutaraldehyde (GA)-induced Schiff base reaction and aldol condensation, respectively, while the second PIC hydrogel layer was strongly anchored on PVA through hydrogen bonding and topological entanglements. The resulting PVA/PIC DL hydrogel coating exhibited favorable strength and chemical resistance. Moreover, the double-defense mechanism provided by the hydration layer and polyzwitterionic brushes endowed the membrane with durable microfiltration and antifouling performances by effectively repelling various types of pollutants.
Collapse
Affiliation(s)
- Qiang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Dapeng Li
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
- Bioengineering Department, College of Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747-2300, United States
| | - Jing Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang 441000, P. R. China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
| |
Collapse
|
2
|
Fan X, Dong X, Liu Y, Zhao B, Song C, Qiu C, Xu Y. Functionalized inorganic hydrogel-based membrane for synergistic oil/water separation and catalytic degradation. WATER RESEARCH 2025; 281:123617. [PMID: 40233671 DOI: 10.1016/j.watres.2025.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Hydrogel-modified superwetting membranes typically exhibit remarkable resistance to oil fouling during oil/water separation but suffer from unfavorable stability due to the inevitable swelling and exfoliation. A functionalized inorganic hydrogel-based membrane (TIH@PVDF) with satisfactory durability was proposed for the first time to ingeniously integrate excellent anti-oil fouling and high flux recovery (FRR) for efficient oil/water separation. The TIH@PVDF membrane exhibited a high separation efficiency of over 99 % for oil-in-water emulsions (including liquid paraffin, isooctane, and hexadecane). Owing to the synergistic effect of hydration and catalytic ability from inorganic hydrogel, a FRR of 97.9 % was achieved by catalytic regeneration after seven cycles of oil/water separation, outperforming hydraulic cleaning (90.6 %). Most importantly, the TIH@PVDF membrane demonstrates outstanding capability in separating actual oil field-produced water, indicating its potential for practical application. Meanwhile, the existence of metallic elements in the inorganic hydrogel endowed the TIH@PVDF membrane with sufficient active sites to produce O2•- and 1O2 via peroxymonosulfate (PMS) activation towards organics decomposition. The TIH@PVDF membrane presented a satisfactory removal efficiency (99.1 %) of sulfamethoxazole during a single-pass catalytic separation process. This research may revolutionize the advancement of inorganic hydrogel-based catalytic membranes for oil/water separation and wastewater decontamination.
Collapse
Affiliation(s)
- Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, PR China.
| | - Xin Dong
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, PR China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Baogang Zhao
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, PR China
| | - Chunxia Qiu
- Transport Planning and Research Institute Ministry of Transport, Beijing, 100028, PR China
| | - Yuanlu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, PR China.
| |
Collapse
|
3
|
Liu Z, Li R, Hou Y, Guo J, Li X, Li K, Liu Q. Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation. Carbohydr Polym 2025; 352:123251. [PMID: 39843131 DOI: 10.1016/j.carbpol.2025.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice. Herein, we reported a free-standing polyvinyl alcohol (PVA)/cellulose nanocrystal (CNC) hydrogel sponge for controllable oil/water separation. In the design, the salt/CNC hybrid crystals instead of conventional salt particles were employed as the sacrificial template, thus CNC was creatively integrated into the long and tortuous 3D interconnected channels via the solvent displacement combined template-leaching strategy. The resultant microstructure woven by CNC bundles in sponge channels could alleviate severe pore collapse in leaching process and oil intrusion. Moreover, it could serve as the superhydrophilic "sieve", promoting the separation efficiency significantly. The gravity-based separation efficiencies for PC5-HL hydrogel sponge in processing of diverse oil/water mixture and oil-in-water emulsions could achieve up to 99.7 and 99.4 %, respectively. In addition, this hydrogel sponge can be used for continuous oil/water separation without obvious decline upon several cycles. This work provides a different way to fabricate the eco-friendly, low-cost and energy-saving filtration hydrogel sponge, showing high potential in oily wastewater treatment.
Collapse
Affiliation(s)
- Zeqi Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Ran Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Yarui Hou
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Juan Guo
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xiaojun Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500 Kunming, China
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| |
Collapse
|
4
|
Zhao J, Liu H, Zhao Y, Qi Y, Wang R, Lv Z, Yu Y, Sun S, Wang Y, Xie A. Construction of CS-SDAEM long-chain polysaccharide derivative on TA@CNTs coated PVDF membrane with effective oil-water emulsion purification and low contamination rate. Int J Biol Macromol 2024; 275:134230. [PMID: 39084996 DOI: 10.1016/j.ijbiomac.2024.134230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Currently, the most effective way to improve the anti-fouling performance of water treatment separation membrane is to enhance the hydrophilicity of the membrane surface, but it can still cause contamination, leading to the occurrence of flux reduction. The construction of a strong hydration layer to resist wastewater contamination is still a challenging task. In this study, a defect-free hydration layer barrier was achieved by grafting chitosan polysaccharide derivatives (CS-SDAEM) on the membrane, which achieved in effective fouling prevention and low flux decline rate. A layer of tannic acid-coated carbon nanotubes (TA@CNTs) has been uniformly deposited on the commercial PVDF membrane so that the surface was rich in -COOH groups, providing sufficient reaction sites. These reactive groups facilitate the grafting of amphiphilic polymers onto the membrane. This modification strategy achieved in enhancing the antifouling performance. The modified membrane achieved low contamination rate with DR of 16.9 % for wastewater filtration, and the flux recovery rate was above 95 % with PWF of 1100 (L·m-2·h-1). The membrane had excellent anti-fouling performance, which provided a new route for the future development of water treatment membrane.
Collapse
Affiliation(s)
- Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuanhang Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yang Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Yiming Wang
- Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China
| | - Aihua Xie
- Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China.
| |
Collapse
|
5
|
Huang J, Ran X, Sun L, Bi H, Wu X. Recent advances in membrane technologies applied in oil-water separation. DISCOVER NANO 2024; 19:66. [PMID: 38619656 PMCID: PMC11018733 DOI: 10.1186/s11671-024-04012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.
Collapse
Affiliation(s)
- Jialu Huang
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Xu Ran
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, China
| | - Hengchang Bi
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| | - Xing Wu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
6
|
Wang A, Zhu Y, Fang W, Gao S, Jin J. Zero-Oil-Fouling Membrane With High Coverage of Grafted Zwitterionic Polymer for Separation of Oil-in-Water Emulsions. SMALL METHODS 2024; 8:e2300247. [PMID: 37357558 DOI: 10.1002/smtd.202300247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Indexed: 06/27/2023]
Abstract
Current hydrophilic modification strategies improve the antifouling ability of membranes but fail to completely eliminate the fouling of emulsified oil droplets with a wide size distribution. Constructing membranes with superior anti-oil-fouling ability to resist various oil droplets especially at high permeation fluxes is challenging. Here, the fabrication of a zero-oil-fouling membrane by grafting considerably high coverage of zwitterionic polymer and building defect-free hydration defense barrier on the surface is reported. A uniform layer of protocatechuic acid with COOH as abundant as existing in every molecule is stably deposited on the membrane so as to provide sufficient reactive sites and achieve dense grafting of the zwitterionic polymer. The coverage of zwitterionic polymer on the membrane plays a crucial role in promoting the antifouling ability to emulsified oil droplets. The poly(vinylidene fluoride) membrane with 93% coverage of the zwitterionic polymer exhibits zero oil fouling when separating multitudinous oil-in-water emulsions with ≈0% flux decline, ≈100% flux recovery, and a high water flux of ≈800 L m-2 h-1 bar-1. This membrane outperforms almost all of the reported membranes in terms of the comprehensive antifouling performance. This work provides a feasible route for manufacturing super-antifouling membranes toward oil/water separation application.
Collapse
Affiliation(s)
- Aqiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Yuzhang Zhu
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wangxi Fang
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Shoujian Gao
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Diepenbroek E, Mehta S, Borneman Z, Hempenius MA, Kooij ES, Nijmeijer K, de Beer S. Advances in Membrane Separation for Biomaterial Dewatering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4545-4566. [PMID: 38386509 PMCID: PMC10919095 DOI: 10.1021/acs.langmuir.3c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations. Improving the antifouling properties of such membranes is a key challenge. Other recent research has been dedicated to enhancing the permeate flux and selectivity. In this review, we present a comprehensive overview of the design requirements for and recent advances in dewatering of biomaterials using membranes. These recent developments offer a viable solution to the challenges of fouling and suboptimal performances. We focus on two emerging development strategies, which are the use of electric-field-assisted dewatering and surface functionalizations, in particular with hydrogels. Our overview concludes with a critical mention of the remaining challenges and possible research directions within these subfields.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sarthak Mehta
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mark A. Hempenius
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Kitty Nijmeijer
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
8
|
Liu Y, Zhang Z, Li Z, Wei X, Zhao F, Fan C, Jiang Z. Surface Segregation Methods toward Molecular Separation Membranes. SMALL METHODS 2023; 7:e2300737. [PMID: 37668447 DOI: 10.1002/smtd.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/06/2023]
Abstract
As a highly promising approach to solving the issues of energy and environment, membrane technology has gained increasing attention in various fields including water treatment, liquid separations, and gas separations, owing to its high energy efficiency and eco-friendliness. Surface segregation, a phenomenon widely found in nature, exhibits irreplaceable advantages in membrane fabrication since it is an in situ method for synchronous modification of membrane and pore surfaces during the membrane forming process. Meanwhile, combined with the development of synthesis chemistry and nanomaterial, the group has developed surface segregation as a versatile membrane fabrication method using diverse surface segregation agents. In this review, the recent breakthroughs in surface segregation methods and their applications in membrane fabrication are first briefly introduced. Then, the surface segregation phenomena and the classification of surface segregation agents are discussed. As the major part of this review, the authors focus on surface segregation methods including free surface segregation, forced surface segregation, synergistic surface segregation, and reaction-enhanced surface segregation. The strategies for regulating the physical and chemical microenvironments of membrane and pore surfaces through the surface segregation method are emphasized. The representative applications of surface segregation membranes are presented. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhao Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zongmei Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Xiaocui Wei
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Fu Zhao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Chunyang Fan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
9
|
Wang H, Wang F, Li Z, Zheng Y, Gu T, Zhang R, Jiang Z. In situ reaction enabled surface segregation toward dual-heterogeneous antifouling membranes for oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132425. [PMID: 37647665 DOI: 10.1016/j.jhazmat.2023.132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Fabricating membranes with superior antifouling property and long-term high performance is in great demand for efficient oil-water separation. Herein, we reported a reaction enabled surface segregation method for antifouling membrane fabrication, in which the pre-synthesized fluorinated ternary copolymer Pluronic F127 was coordinated with Ti4+ as segregation additive in the membrane casting bath. Additionally, tannic acid was utilized to enhance the self-assembly of the copolymer in the coagulation bath, and freshly-biomineralized TiO2 was anchored into the membrane surface through hydrogen bond. A hydrogel layer was constructed onto the membrane surface with synergistically tailored heterogeneous chemical composition and heterogeneous geometrical roughness. The dual-heterogeneous membrane exhibited hydrophilic and underwater superoleophobic features, resulting in high water flux (621.7 L m-2 h-1) at low operation pressure of 0.05 MPa and an excellent antifouling property (only 4.8% flux decline during 24-hour filtration). In situ reaction enabled surface segregation method will accelerate the development of antifouling membranes for oil-in-water emulsion separation.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Fei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhichao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yu Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tianrun Gu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Runnan Zhang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China; Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Zhongyi Jiang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China; Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
10
|
Wang Y, Meng F, Han L, Liu X, Guo F, Lu H, Cheng D, Wang W. Constructing a highly tough, durable, and renewable flexible filter by epitaxial growth of a glass fiber fabric for high flux and superefficient oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130807. [PMID: 36709734 DOI: 10.1016/j.jhazmat.2023.130807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The separation and purification of complex and stable stubborn oily sewage is extremely challenging. To respond to this challenge, we developed a powerful flexible filter with ultrahigh strength, durability, flux, separation efficiency, and a multiobjective separation function based on a universal epitaxial growth process of glass fiber fabric (Gf). The underwater oil contact angle (UOCA) of the silicate@Gf (MgSi@Gf) filter is 156.3°, so it can achieve both an ultrahigh permeation flux (5632.7 L·m-2·h-1) and oil-water separation efficiency (99.5%) under gravity (≈ 1 kPa) in purifying surfactant-stabilized emulsions, actual industrial oily sewage and mechanical cold rolling emulsions. The filter with a high tensile strength (66.5 MPa) and oil invasion pressure (4626 Pa) can withstand the impact of much sewage or intense water flow. The filter can tolerate extreme conditions and can maintain high separation performance in acid or alkaline (pH 1-13), high or low temperature (100 °C, 200 °C, -18 °C) conditions or natural salty waters such as seawater. The filter can remove methylene blue (MB) dye (99.8%) by filtration, and can be repeatedly and easily reconstructed (renewable advantage). The filter shows great potential for efficiently eliminating the hazards of contaminants in actual oily sewage and thus protect human health.
Collapse
Affiliation(s)
- Yiwen Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Fanxiang Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Lei Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Xiangyu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Hang Lu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Dehao Cheng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
11
|
Cheng B, Yan S, Li Y, Zheng L, Wen X, Tan Y, Yin X. In-situ growth of robust and superhydrophilic nano-skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
13
|
Zhang J, Qu W, Li X, Wang Z. Surface engineering of filter membranes with hydrogels for oil-in-water emulsion separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Mo Y, Zhang F, Dong H, Zhang X, Gao S, Zhang S, Jin J. Ultrasmall Cu 3(PO 4) 2 Nanoparticles Reinforced Hydrogel Membrane for Super-antifouling Oil/Water Emulsion Separation. ACS NANO 2022; 16:20786-20795. [PMID: 36475618 DOI: 10.1021/acsnano.2c07977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane fouling is a persistent and crippling challenge for oily wastewater treatment due to the high susceptibility of membranes to contamination. A feasible strategy is to design a robust and stable hydration layer on the membrane surface to prevent contaminates. A hydrogel illustrates a distinct category of materials with outstanding antifouling performance but is limited by its weak mechanical property. In this research, we report a reinforced hydrogel on a membrane by in situ growing ultrasmall hydrophilic Cu3(PO4)2 nanoparticles in a copper alginate (CuAlg) layer via metal-ion-coordination-mediated mineralization. The embeddedness of hydrophilic Cu3(PO4)2 nanoparticle with a size of 3-5 nm endows the CuAlg/Cu3(PO4)2 composite hydrogel with enhanced mechanical property as well as reinforced hydrate ability. The as-prepared CuAlg/Cu3(PO4)2 modified membrane exhibits a superior oil-repulsive property and achieves a nearly zero flux decline for separating surfactant stabilized oil-in-water emulsions with a high permeate flux up to ∼1330 L m-2 h-1 bar-1. Notably, it is capable of keeping similar permeate flux for both pure water and oil-in-water emulsions during filtration, which is superior to the currently reported membranes, indicating its super-antifouling properties.
Collapse
Affiliation(s)
- Yuyue Mo
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Hefeng Dong
- China State Shipbuilding Corporation System Engineering Research Institute, Beijing100036, China
| | - Xingzhen Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Shoujian Gao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
15
|
Wang R, Zhu L, Zhu X, Yan Z, Xia F, Zhang J, Liu X, Yu J, Xue Q. A super-hydrophilic and underwater super-oleophobic membrane with robust anti-fouling performance of high viscous crude oil for efficient oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Cao M, Xiao F, Yang Z, Chen Y, Lin L. Purification of oil-containing emulsified wastewater via PAN nanofiber membrane loading PVP-UiO-66-NH2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Zhu J, Pan F, Wang M, Zhu Z, Xiao J, Shao L, Du Y, Jiang Z. In-situ construction of water capture layer through reaction enhanced surface segregation for pervaporation desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Wang J, Ning J, Li S, Jia M, Liu L, Lu J, Hu Y, Li J. Multipurpose of Zwitterionic Poly(imidazolium)-Based Hydrogel Coating for Oil/Water Separation with Long-Term Antibiofouling Property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Im H, Heo E, Song DH, Park J, Park H, Kang K, Chang JB. Fabrication of heterogeneous chemical patterns on stretchable hydrogels using single-photon lithography. SOFT MATTER 2022; 18:4402-4413. [PMID: 35635476 DOI: 10.1039/d2sm00253a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Curved hydrogel surfaces bearing chemical patterns are highly desirable in various applications, including artificial blood vessels, wearable electronics, and soft robotics. However, previous studies on the fabrication of chemical patterns on hydrogels employed two-photon lithography, which is still not widely accessible to most laboratories. This work demonstrates a new patterning technique for fabricating curved hydrogels with chemical patterns on their surfaces without two-photon microscopy. In this work, we show that exposing hydrogels in fluorophore solutions to single photons via confocal microscopy enables the patterning of fluorophores on hydrogels. By applying this technique to highly stretchable hydrogels, we demonstrate three applications: (1) improving pattern resolution by fabricating patterns on stretched hydrogels and then returning the hydrogels to their initial, unstretched length; (2) modifying the local stretchability of hydrogels at a microscale resolution; and (3) fabricating perfusable microchannels with chemical patterns by winding chemically patterned hydrogels around a template, embedding the hydrogels in a second hydrogel, and then removing the template. The patterning method demonstrated in this work may facilitate a better mimicking of the physicochemical properties of organs in tissue engineering and may be used to make hydrogel robots with specific chemical functionalities.
Collapse
Affiliation(s)
- Haeseong Im
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Eunseok Heo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Dae-Hyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jeongwon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Hyeonbin Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
20
|
Oil/water separation membranes with stable ultra-high flux based on the self-assembly of heterogeneous carbon nanotubes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Zhang J, Huang X, Xiong Y, Zheng W, Liu W, He M, Li L, Liu J, Lu L, Peng K. Spider silk bioinspired superhydrophilic nanofibrous membrane for efficient oil/water separation of nanoemulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Wang Z, Gao J, Zhu L, Meng J, He F. Tannic acid-based functional coating: surface engineering of membranes for oil-in-water emulsion separation. Chem Commun (Camb) 2022; 58:12629-12641. [DOI: 10.1039/d2cc05102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in the tannic acid-based functional coating for surface engineering of membranes toward oil-in-water emulsion separation is summarized.
Collapse
Affiliation(s)
- Zhenxing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Lin Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jinxuan Meng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Fang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
23
|
Zhao X, Lan Y, Pan J, Wang R, Wang T, Liu L. Polyphenol-engineered superwetting membranes with wrinkled microspherical organizations for high-efficient oil/water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Feng Q, Zhan Y, Yang W, Dong H, Sun A, Liu Y, Wen X, Chiao YH, Zhang S. Layer-by-layer construction of super-hydrophilic and self-healing polyvinylidene fluoride composite membrane for efficient oil/water emulsion separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Long M, Yang C, You X, Zhang R, Yuan J, Guan J, Zhang S, Wu H, Khan NA, Kasher R, Jiang Z. Electrostatic enhanced surface segregation approach to self-cleaning and antifouling membranes for efficient molecular separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Alkali-tolerant polymeric gel electrolyte membrane based on cross-linked carboxylated chitosan for supercapacitors. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Sub10 μm macroporous aramid substrates with a hierarchically structured interface for organic solvent nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Robust bio-inspired superhydrophilic and underwater superoleophobic membranes for simultaneously fast water and oil recovery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119041] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Deng W, Fan T, Li Y. In situ biomineralization-constructed superhydrophilic and underwater superoleophobic PVDF-TiO2 membranes for superior antifouling separation of oil-in-water emulsions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Zhou Y, Zhang J, Wang Z, He F, Peng S, Li Y. A modified TA-APTES coating: Endowing porous membranes with uniform, durable superhydrophilicity and outstanding anti-crude oil-adhesion property via one-step process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Zulfiqar U, Thomas AG, Matthews A, Lewis DJ. Surface Engineering of Ceramic Nanomaterials for Separation of Oil/Water Mixtures. Front Chem 2020; 8:578. [PMID: 33330349 PMCID: PMC7711160 DOI: 10.3389/fchem.2020.00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Oil/water mixtures are a potentially major source of environmental pollution if efficient separation technology is not employed during processing. A large volume of oil/water mixtures is produced via many manufacturing operations in food, petrochemical, mining, and metal industries and can be exposed to water sources on a regular basis. To date, several techniques are used in practice to deal with industrial oil/water mixtures and oil spills such as in situ burning of oil, bioremediation, and solidifiers, which change the physical shape of oil as a result of chemical interaction. Physical separation of oil/water mixtures is in industrial practice; however, the existing technologies to do so often require either dissipation of large amounts of energy (such as in cyclones and hydrocyclones) or large residence times or inventories of fluids (such as in decanters). Recently, materials with selective wettability have gained attention for application in separation of oil/water mixtures and surfactant stabilized emulsions. For example, a superhydrophobic material is selectively wettable toward oil while having a poor affinity for the aqueous phase; therefore, a superhydrophobic porous material can easily adsorb the oil while completely rejecting the water from an oil/water mixture, thus physically separating the two components. The ease of separation, low cost, and low-energy requirements are some of the other advantages offered by these materials over existing practices of oil/water separation. The present review aims to focus on the surface engineering aspects to achieve selectively wettability in materials and its their relationship with the separation of oil/water mixtures with particular focus on emulsions, on factors contributing to their stability, and on how wettability can be helpful in their separation. Finally, the challenges in application of superwettable materials will be highlighted, and potential solutions to improve the application of these materials will be put forward.
Collapse
Affiliation(s)
- Usama Zulfiqar
- Department of Materials, University of Manchester, Manchester, United Kingdom.,International Centre for Advanced Materials (ICAM), University of Manchester, Manchester, United Kingdom
| | - Andrew G Thomas
- Department of Materials, University of Manchester, Manchester, United Kingdom.,International Centre for Advanced Materials (ICAM), University of Manchester, Manchester, United Kingdom
| | - Allan Matthews
- Department of Materials, University of Manchester, Manchester, United Kingdom.,International Centre for Advanced Materials (ICAM), University of Manchester, Manchester, United Kingdom
| | - David J Lewis
- Department of Materials, University of Manchester, Manchester, United Kingdom.,International Centre for Advanced Materials (ICAM), University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Wu M, Liu W, Mu P, Wang Q, Li J. Sacrifice Template Strategy to the Fabrication of a Self-Cleaning Nanofibrous Membrane for Efficient Crude Oil-in-Water Emulsion Separation with High Flux. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53484-53493. [PMID: 33174424 DOI: 10.1021/acsami.0c15387] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The superhydrophilic/underwater superoleophobic membrane materials have attracted considerable attention in oil/water separation. However, most materials are extremely susceptible to pollution during oil-water separation, which drastically restricts their widespread applications. Herein, a momordica-charantia-like nanofibrous membrane (MCNM) with underwater superoleophobic performance was fabricated through a sacrifice template strategy by the electrospinning solution of zeolitic imidazolate framework-8 (ZIF-8) and polyacrylonitrile particles. The opened voids and wrinkles left after removing the template of nanocrystals ZIF-8 not only increased the porosity and roughness of the as-prepared fibrous membrane but also tremendously improved the underwater superoleophobicity. Therefore, the as-prepared MCNM showed excellent self-cleaning performance toward crude oil under water, avoiding the decrease of the separation efficiency and flux caused by membrane fouling during oil-water separation. Meanwhile, the separation efficiency of various surfactant-stabilized oil-in-water emulsions was higher than 99.6% with a flux up to 1580 ± 30 L m-2 h-1 solely driven by gravity. Moreover, no obvious wrinkles and cracks were observed on the resulted nanofibrous membrane after the sand impact and bent testing. More importantly, the as-prepared MCNM still maintained exceptional underwater superoleophobicity in harsh environment (3.5 wt % NaCl, 4 M HCl, 50 °C hot water) even after ultrasound for 1 h. The robust mechanical and chemical stability makes the antifouling MCNM exhibit tremendous potential for practical applications in dealing with oily wastewater in the future.
Collapse
Affiliation(s)
- Mingming Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Weimin Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Qingtao Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
33
|
Wang M, Xu Z, Guo Y, Hou Y, Li P, Niu QJ. Engineering a superwettable polyolefin membrane for highly efficient oil/water separation with excellent self-cleaning and photo-catalysis degradation property. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118409] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Cai Y, Chen D, Li N, Xu Q, Li H, He J, Lu J. A Self-Cleaning Heterostructured Membrane for Efficient Oil-in-Water Emulsion Separation with Stable Flux. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001265. [PMID: 32406157 DOI: 10.1002/adma.202001265] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Lack of clean water is a major global challenge. Membrane separation technology is an ideal choice for the treatment of industrial, domestic sewage owing to its low energy consumption and cost. However, membranes are highly susceptible to contamination, particularly during wastewater treatment, which has limited their practical applications in this field. Similarly, the flux of the membrane decreases with prolonged use due to its reduced interlayer spacing. Preparation of membranes with anticontamination properties and stable flux is the key to addressing this problem. In this study, a 2D heterostructure membrane with visible-light-driven self-cleaning performance is prepared via a self-assembly process. Notably, the addition of palygorskite increases the interlayer spacing of the graphene and heterojunction structures, which increases the flux of the membrane and avoids a decrease of the interlayer spacing of the membrane under pressure. The presence of a heterojunction with visible light catalytic properties effectively avoids membrane fouling and avoids a sharp decrease of the permeation flux. Importantly, the prepared 2D membrane has excellent separation performance for oil-water emulsions with both high flux and efficiency. These features suggest great potential for the prepared 2D membrane in wastewater treatment applications.
Collapse
Affiliation(s)
- Yahui Cai
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| |
Collapse
|