1
|
Tan YZ, Alias NH, Aziz MHA, Jaafar J, Othman FEC, Chew JW. Progress on Improved Fouling Resistance-Nanofibrous Membrane for Membrane Distillation: A Mini-Review. MEMBRANES 2023; 13:727. [PMID: 37623788 PMCID: PMC10456459 DOI: 10.3390/membranes13080727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Nanofibrous membranes for membrane distillation (MD) have demonstrated promising results in treating various water and wastewater streams. Significant progress has been made in recent decades because of the development of sophisticated membrane materials, such as superhydrophobic, omniphobic and Janus membranes. However, fouling and wetting remain crucial issues for long-term operation. This mini-review summarizes ideas as well as their limitations in understanding the fouling in membrane distillation, comprising organic, inorganic and biofouling. This review also provides progress in developing antifouling nanofibrous membranes for membrane distillation and ongoing modifications on nanofiber membranes for improved membrane distillation performance. Lastly, challenges and future ways to develop antifouling nanofiber membranes for MD application have been systematically elaborated. The present mini-review will interest scientists and engineers searching for the progress in MD development and its solutions to the MD fouling issues.
Collapse
Affiliation(s)
- Yong Zen Tan
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| | - Nur Hashimah Alias
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Mohd Haiqal Abd Aziz
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub Muar, Batu Pahat 84600, Johor, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Faten Ermala Che Othman
- Digital Manufacturing & Design Center (DManD), Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore;
| | - Jia Wei Chew
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Singapore Membrane Technology Center, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
2
|
A novel UiO-66-NH2/graphene oxide composite thin membrane for retarding membrane wetting in membrane distillation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
3
|
Nambikkattu J, Jacob Kaleekkal N. Investigating the performance of surface-engineered membranes for direct contact membrane distillation. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2178011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
4
|
Chen L, Yin Z, Li F, Chen Z. Treatment of simulated saline brine water by membrane distillation process enhanced through alternating current electric field. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
5
|
Luo Y, Shao S, Mo J, Yang Y, Wang Z, Li X. Spatio-temporal progression and influencing mechanism of local wetting in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Gryta M. Membrane Distillation Crystallizer Applied for Separation of NaCl Solutions Contaminated with Oil. MEMBRANES 2022; 13:35. [PMID: 36676842 PMCID: PMC9862495 DOI: 10.3390/membranes13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the membrane crystallizer was used to separate a saturated NaCl solution contaminated with an oil emulsion. The crystallizer was connected via a mesh separator with a feed tank in which capillary submerged modules were assembled. The effect of scaling and oil sorption on the wetting of polypropylene (PP) membranes has been investigated during the long-term studies. It has been found that cooling the solution in the crystallizer by 15 K below the feed temperature resulted in intensive NaCl crystallization in the zone below the mesh separator. A result, the salt crystallization on the membrane surface was eliminated. Contamination of saturated brines with oil in the concentration exceeding 100 mg/L caused the oil penetration into the membrane pores. The application of a PP net assembled on the capillary membranes surface reduced the intensity of wetting phenomenon caused by scaling and the oil sorption, which provides a stable membrane module performance during 1300 h test.
Collapse
Affiliation(s)
- Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
7
|
Zhang J, Jian Z, Jiang M, Peng B, Zhang Y, Wu Z, Zheng J. Influence of Dispersed TiO 2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO 2 Composite Membranes. MEMBRANES 2022; 12:1118. [PMID: 36363673 PMCID: PMC9694972 DOI: 10.3390/membranes12111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Herein, the influence of various contents of polyethylene glycol (PEG) on the dispersion of TiO2 nanoparticles and the comprehensive properties of PVDF/TiO2 composite membranes via the steric hindrance interaction was systematically explored. Hydrophilic PEG was employed as a dispersing surfactant of TiO2 nanoparticles in the pre-dispersion process and as a pore-forming additive in the following membrane preparation process. The slight overlap shown in the TEM image and low TSI value (<1) of the composite casting solution indicated the effective dispersion and stabilization under the steric interaction with a PEG content of 6 wt.%. Properties such as the surface pore size, the development of finger-like structures, permeability, hydrophilicity and Zeta potential were obviously enhanced. The improved antifouling performance between the membrane surface and foulants was corroborated by less negative free energy of adhesion (about −42.87 mJ/m2), a higher interaction energy barrier (0.65 KT) and low flux declination during the filtration process. The high critical flux and low fouling rate both in winter and summer as well as the long-term running operation in A/O-MBR firmly supported the elevated antifouling performance, which implies a promising application in the municipal sewage treatment field.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Environmental Science and Engineering, South University of Science and Technology of China, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
- Department of Electrical Engineering, National Cheng Kung University, No. 1 Daxue Road, Tainan 701401, China
| | - Zicong Jian
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Bo Peng
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| |
Collapse
|
8
|
Chang J, Chang H, Meng Y, Zhao H, Lu M, Liang Y, Yan Z, Liang H. Effects of surfactant types on membrane wetting and membrane hydrophobicity recovery in direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Stafford J, Kendrick E. Sustainable Upcycling of Spent Electric Vehicle Anodes into Solution-Processable Graphene Nanomaterials. Ind Eng Chem Res 2022; 61:16529-16538. [PMID: 36398202 PMCID: PMC9650691 DOI: 10.1021/acs.iecr.2c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
![]()
A major transition to electric vehicles (EVs) is underway
globally,
as countries target reductions in greenhouse gas emissions from the
transport sector. As this rapid growth continues, significant challenges
remain around how to sustainably manage the accompanying large volumes
of waste from end-of-life lithium-ion batteries that contain valuable
rare earth and critical materials. Here, we show that high-shear exfoliation
in aqueous surfactants can upcycle spent graphite anodes recovered
from an EV into few-layer graphene dispersions. For the same hydrodynamic
conditions, we report a process yield that is 37.5% higher when using
spent graphite anodes as the precursor material over high-purity graphite
flakes. When the surfactant concentration is increased, the average
atomic layer number reduces in a similar way to that of high-purity
precursors. We find that the electrical conductance of few-layer graphene
produced using the graphite flake precursor is superior and identify
the limitations when using aqueous surfactant solutions as the exfoliation
medium for spent graphite anode material. Using these nontoxic solution-processable
nanomaterial dispersions, functional paper-based electronic circuit
boards were fabricated, illustrating the potential for end-to-end,
environmentally sustainable upcycling of spent EV anodes into new
technologies.
Collapse
|
10
|
|
11
|
Kim J, Yun ET, Tijing L, Shon HK, Hong S. Mitigation of fouling and wetting in membrane distillation by electrical repulsion using a multi-layered single-wall carbon nanotube/polyvinylidene fluoride membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Preparation and Modification of PVDF Membrane and Study on Its Anti-Fouling and Anti-Wetting Properties. WATER 2022. [DOI: 10.3390/w14111704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Membrane distillation (MD) has unique advantages in the treatment of high-salt wastewater because it can make full use of low-grade heat sources. The high salinity mine water in western mining areas of China is rich in Ca2+, Mg2+, SO42− and HCO3−. In the MD process, the inorganic substances in the feed will cause membrane fouling. At the same time, low surface tension organic substances which could be introduced in the mining process will cause irreversible membrane wetting. To improve the anti-fouling and anti-wetting properties of the membrane, the PVDF omniphobic membrane in this paper was prepared by electrospinning. The water contact angle (WCA) can reach 153°. Direct contact membrane distillation (DCMD) was then used for treating high-salinity mine water. The results show that, compared with the unmodified membranes, the flux reduction rate of the omniphobic membrane was reduced by 34% in 20 h, showing good anti-fouling property. More importantly, the omniphobic membrane cannot be wetted easily by the feed containing 0.3 mmol/L SDS. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory was used to analyze the free energy of the interface interaction between the membrane and pollutants, aiming to show that the omniphobic membrane was more difficult to pollute. The result was consistent with the flux variation in the DCMD process, providing an effective basis for explaining the mechanism of membrane fouling and membrane wetting.
Collapse
|
13
|
Du X, Alipanahrostami M, Wang W, Tong T. Long-Chain PFASs-Free Omniphobic Membranes for Sustained Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23808-23816. [PMID: 35536240 DOI: 10.1021/acsami.2c01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Omniphobic membranes possessing high wetting resistance have been created for the treatment of challenging hypersaline feedwaters with low surface tension through membrane distillation (MD). However, virtually all such membranes are fabricated with long-chain per- and polyfluoroalkyl substances (PFASs, ≥8 fluorinated carbons). The environmental risks and high bioaccumulation potential of long-chain PFASs have raised increasing concerns. Developing highly wetting-resistant MD membranes while avoiding the use of long-chain PFASs is essential to improve the viability of MD for resilient and sustainable water purification. We demonstrate that MD membranes with exceptional wetting resistance can be designed through the combination of hierarchically structured membranes consisting of re-entrant texture at different length scales and (ultra)short-chain fluorocarbons, which have lower acute toxicity and bioaccumulation potentials than long-chain PFASs. Our hierarchically structured membrane with three-tier micro/nanostructure fabricated with short-chain fluorocarbon possesses superior wetting resistance, which is comparable to or higher than the long-chain PFASs-based omniphobic membranes reported in the literature. Furthermore, the hierarchically structured membranes fabricated with ultrashort-chain fluorocarbons display improved wetting resistance against feedwaters with low surface tension. Our findings indicate that long-chain PFASs are not required when designing wetting-resistant membranes and that the balance between sustainability and wetting resistance should be tailored to the wetting potential of the feedwater.
Collapse
Affiliation(s)
- Xuewei Du
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mohammad Alipanahrostami
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wei Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
14
|
Li J, Ren LF, Huang M, Yang J, Shao J, He Y. Facile preparation of omniphobic PDTS-ZnO-PVDF membrane with excellent anti-wetting property in direct contact membrane distillation (DCMD). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Meng L, Mansouri J, Li X, Liang J, Huang M, Lv Y, Wang Z, Chen V. Omniphobic membrane via bioinspired silicification for the treatment of RO concentrate by membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Gul A, Hruza J, Dvorak L, Yalcinkaya F. Chemical Cleaning Process of Polymeric Nanofibrous Membranes. Polymers (Basel) 2022; 14:polym14061102. [PMID: 35335433 PMCID: PMC8950600 DOI: 10.3390/polym14061102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Membrane fouling is one of the most significant issues to overcome in membrane-based technologies as it causes a decrease in the membrane flux and increases operational costs. This study investigates the effect of common chemical cleaning agents on polymeric nanofibrous membranes (PNM) prepared by polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and polyamide 6 (PA6) nanofibers. Common alkaline and acid membrane cleaners were selected as the chemical cleaning agents. Membrane surface morphology was investigated. The PAN PNM were selected and fouled by engine oil and then cleaned by the different chemical cleaning agents at various ratios. The SEM results indicated that the use of chemical agents had some effects on the surface of the nanofibrous membranes. Moreover, alkaline cleaning of the fouled membrane using the Triton X 100 surfactant showed a two to five times higher flux recovery than without using a surfactant. Among the tested chemical agents, the highest flux recovery rate was obtained by a binary solution of 5% sodium hydroxide + Triton for alkaline cleaning, and an individual solution of 1% citric acid for acidic cleaning. The results presented here provide one of the first investigations into the chemical cleaning of nanofiber membranes.
Collapse
|
17
|
Ramos RL, Lebron YAR, Moreira VR, Martins MF, Santos LVS, Amaral MCS. Direct contact membrane distillation as an approach for water treatment with phenolic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114117. [PMID: 34838381 DOI: 10.1016/j.jenvman.2021.114117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Membrane distillation is a well-established technology for non-volatile components retention, but the removal of volatile and semi-volatile substances in trace concentration, such as phenols derivates commonly found in surface waters, requires further comprehension. In this context, the direct contact membrane distillation (DCMD) performance was assessed for the retention of fifteen phenolic compounds in surface water by different operating conditions of temperature (40, 50, and 60 °C), feed concentration (3, 5, 7, and 10 μg L-1), and permeate recovery rate (30, 50 and 70%). Kruskal Wallis confirmed a significant difference (p < 0.05) between the global removal of phenolic compounds at different temperatures. The increase in temperature led to a reduction in all compound's removal. As expected, a positive correlation (rSpearman>0.8) between the compounds' volatility and their losses was observed. Regarding the feed concentration and the recovery rate, there was no statistical difference between the removal values obtained for the phenolic compounds. This indicates the DCMD strength for that application. However, a trend for flux decay was noticed as the recovery rate (RR) increased, confirmed by temporal trend analysis and Mann-Kendall tests, although the flux decay was relatively low (J/J0 = 0.89). Aiming for a greater removal and to avoid a reduction in process performance, it is recommended to work with 40 °C as feed temperature and a RR prior to the flux decay (RR<30%). Nonetheless, the technology was efficient and did not compromise the permeate quality with >90% efficiency in pollutants removal, even for higher temperatures and RR.
Collapse
Affiliation(s)
- Ramatisa L Ramos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| | - Yuri A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Victor R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Mateus F Martins
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Lucilaine V S Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Miriam C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Han M, Zhao R, Shi J, Li X, He D, Liu L, Han L. Membrane Distillation Hybrid Peroxydisulfate Activation toward Mitigating the Membrane Wetting by Sodium Dodecyl Sulfate. MEMBRANES 2022; 12:membranes12020164. [PMID: 35207085 PMCID: PMC8875670 DOI: 10.3390/membranes12020164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
The fouling/wetting of hydrophobic membrane caused by organic substances with low-surface energy substantially limits the development of the membrane distillation (MD) process. The sulfate radical (SO4 ·−)-based advanced oxidation process (AOP) has been a promising technology to degrade organics in wastewater treatment, and peroxydisulfate (PDS) could be efficiently activated by heat. Thus, a hybrid process of MD-AOP via PDS activated by a hot feed was hypothesized to mitigate membrane fouling/wetting. Experiments dealing with sodium dodecyl sulfate (SDS) containing a salty solution via two commercial membranes (PVDF and PTFE) were performed, and varying membrane wetting extents in the coupling process were discussed at different PDS concentrations and feed temperatures. Our results demonstrated permeate flux decline and a rise in conductivity due to membrane wetting by SDS, which was efficiently alleviated in the hybrid process rather than the standalone MD process. Moreover, such a mitigation was enhanced by a higher PDS concentration up to 5 mM and higher feed temperature. In addition, qualitative characterization on membrane coupons wetted by SDS was successfully performed using electrochemical impedance spectroscopy (EIS). The EIS results implied both types of hydrophobic membranes were protected from losing their hydrophobicity in the presence of PDS activation, agreeing with our initial hypothesis. This work could provide insight into future fouling/wetting control strategies for hydrophobic membranes and facilitate the development of an MD process.
Collapse
Affiliation(s)
- Minyuan Han
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (M.H.); (R.Z.)
| | - Ruixue Zhao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (M.H.); (R.Z.)
| | - Jianchao Shi
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Xiaobo Li
- Animal Husbandry Service of Chongqing, Chongqing 401121, China; (X.L.); (D.H.)
| | - Daoling He
- Animal Husbandry Service of Chongqing, Chongqing 401121, China; (X.L.); (D.H.)
| | - Lang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (M.H.); (R.Z.)
- Correspondence:
| |
Collapse
|
19
|
Wong PW, Yim VMW, Guo J, Chan BS, Deka BJ, An AK. Noninvasive Real-Time Monitoring of Wetting Progression in Membrane Distillation Using Impedance Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:535-545. [PMID: 34935352 DOI: 10.1021/acs.est.1c04433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) is a promising technology for the treatment of high salinity wastewater using a hydrophobic membrane; however, the occurrence of wetting due to surfactants in polluted or low surface tension liquid impedes MD application. Common monitoring approaches, such as conductivity and flux measurement, cannot explain the wetting phenomenon that occurs during the wetting process in detail. Recently, impedance spectroscopy has been proposed for early wetting detection, as it depends on the change of water/air composition in the membrane pores. An earlier and larger variation was observed with precise signal detection. In this study, we proposed an analytical approach to estimate the wetting front, which is the average feed intrusion distance, by the impedance value recorded in real-time operation. With this proposed approach, the wetting mechanism in the presence of a surfactant and the effect of pore size on a commercial polyvinylidene fluoride membrane could be quantified, which cannot be explained in detail using conductivity and flux measurements.
Collapse
Affiliation(s)
- Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Vicki Man-Wai Yim
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Jiaxin Guo
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Ben Sun Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong
| |
Collapse
|
20
|
Membrane Distillation of Saline Water Contaminated with Oil and Surfactants. MEMBRANES 2021; 11:membranes11120988. [PMID: 34940489 PMCID: PMC8708787 DOI: 10.3390/membranes11120988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022]
Abstract
Application of the membrane distillation (MD) process for the treatment of high-salinity solutions contaminated with oil and surfactants represents an interesting area of research. Therefore, the aim of this study is to investigate the effect of low-concentration surfactants in oil-contaminated high-salinity solutions on the MD process efficiency. For this purpose, hydrophobic capillary polypropylene (PP) membranes were tested during the long-term MD studies. Baltic Sea water and concentrated NaCl solutions were used as a feed. The feed water was contaminated with oil collected from bilge water and sodium dodecyl sulphate (SDS). It has been demonstrated that PP membranes were non-wetted during the separation of pure NaCl solutions over 960 h of the module exploitation. The presence of oil (100–150 mg/L) in concentrated NaCl solutions caused the adsorption of oil on the membranes surface and a decrease in the permeate flux of 30%. In turn, the presence of SDS (1.5–2.5 mg/L) in the oil-contaminated high-salinity solutions slightly accelerated the phenomenon of membrane wetting. The partial pores’ wetting accelerated the internal scaling and affected degradation of the membrane’s structure. Undoubtedly, the results obtained in the present study may have important implications for understanding the effect of low-concentration SDS on MD process efficiency.
Collapse
|
21
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
23
|
Liao X, Wang Y, Liao Y, You X, Yao L, Razaqpur AG. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
In-situ electric-enhanced membrane distillation for simultaneous flux-increasing and anti-wetting. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Na+/Mg2+ interactions on membrane distillation permeation flux and crystallization performance during high saline solution treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
27
|
Fabrication of superhydrophobic PDTS-ZnO-PVDF membrane and its anti-wetting analysis in direct contact membrane distillation (DCMD) applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Effect of pH on anionic polyacrylamide adhesion: New insights into membrane fouling based on XDLVO analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Gryta M. Mitigation of Membrane Wetting by Applying a Low Temperature Membrane Distillation. MEMBRANES 2020; 10:membranes10070158. [PMID: 32708091 PMCID: PMC7408305 DOI: 10.3390/membranes10070158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/04/2022]
Abstract
The formation of deposits on the membrane surface during membrane distillation is considered as one of the main reasons for membrane wetting. To assess the intensity of this phenomenon, long-term studies were performed comparing the membrane wettability with non-fouling feed (NaCl solutions) and feeds containing various foulants (lake and Baltic Sea water). The polypropylene membranes used were non-wetted by NaCl solutions during several hundred hours of water desalination. However, the occurrence of CaCO3 or other salt crystallization caused the membranes to be partially wetted, especially when periodical membrane cleaning was applied. The scaling intensity was significantly reduced by lowering the feed temperature from 353 to 315 K, which additionally resulted in the limitation of the degree of membrane wetting.
Collapse
Affiliation(s)
- Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|