1
|
Gao Q, Duan L, Zhang H, Jia Y, Li M, Li S, Yang D. Effect of Mn 2+ on RO membrane organic fouling: Insights into the complexation and interfacial interaction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122041. [PMID: 39083934 DOI: 10.1016/j.jenvman.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
RO process is commonly used to treat and reuse manganese-containing industrial wastewater. Nevertheless, even after undergoing multi-stage treatment, the secondary biochemical effluent still exhibits a high concentration of Mn2+ coupled with organics entering the RO system, leading to membrane fouling. In this work, we systematically analyze the RO membrane organic fouling processes and mechanisms, considering the coexistence of Mn2+ with humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA) and their mixtures (HBS). The impact of Mn2+ on membrane fouling was HBS > SA > HA > BSA, controlling polysaccharide pollutant concentrations should be a priority for mitigating membrane fouling. In the presence of Mn2+ with HA, SA, or HBS, membrane fouling is primarily attributed to the complexation of organics and Mn2+ and the facilitation of interfacial interaction energy. RO membrane BSA fouling was not directly affected by Mn2+, the addition of Mn2+ induced a salting-out effect, leading to the deposition of BSA in a single molecular on the membrane. Simultaneously, adhesion energy hinders the deposition of BSA on the membrane, resulting in milder membrane fouling. This study provided the theoretical basis and suggestions for RO membrane organic fouling control in the presence of Mn2+.
Collapse
Affiliation(s)
- Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongmin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Yin Z, Liu Y, Hu Z, Wang J, Li F, Yang W. Sustainable and ultrafast antibiotics removal, self-cleaning and disinfection with electroactive metal-organic frameworks/carbon nanotubes membrane. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134944. [PMID: 38889470 DOI: 10.1016/j.jhazmat.2024.134944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Although conventional nanofiltration (NF) membrane is widely applied in water treatment, it faces the challenges of insufficient selectivity toward emerging contaminants, low permeability and non-sustainable fouling control. Herein, a novel electroactive metal-organic frameworks/carbon nanotubes membrane was constructed by facile and green nanobubbles-mediated non-solvent-induced phase separation (NIPS) strategy for ultrafast antibiotics removal. It presented 3-fold to 100-fold higher permeability (101.3-105.7 L·h-1·m-2·bar-1) without compromising rejection (71.8 %-99.3 %) of common antibiotics (tetracycline, norfloxacin, sulfamethoxazole, sulfamethazine) than most commercial and state-of-the-art NF membranes. The separation mechanism was due to the synergy of loose selective layer with three-dimensional interconnected networks and UiO-66/CNTs with unique pore sieving and charge property. It also presented excellent antibiotics selectivity with high NaCl/tetracycline separation factor of 194 and CuCl2/tetracycline separation factor of 316 for remediation of antibiotics and heavy metal combined pollution. Meanwhile, it possessed efficient anti-fouling, antibacterial and electro-driven self-cleaning ability, which enabled sustainable fouling control and disinfection with short process, low energy and chemical consumption. Furthermore, potential application of UiO-66/CNTs membrane in wastewater reclamation was demonstrated by stable antibiotics rejection, efficient flux recovery and long-term stability over 260 h. This study would provide useful insights into removal of emerging contaminants from water by advanced NF membrane.
Collapse
Affiliation(s)
- Zhonglong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yulong Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zebin Hu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiancheng Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiben Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Miao R, Ran H, Yang Y, Li Y, Ma Z, Lv Y, Meng X, He M, Wang L. In situ acid production by organic matter induced with trace homogeneous Fenton reagent for membrane fouling control. WATER RESEARCH 2024; 258:121752. [PMID: 38761591 DOI: 10.1016/j.watres.2024.121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
The homogeneous Fenton process involves both coagulation and oxidation, but it requires added acidity, so it is rarely used to control membrane fouling. This work found that the pH of neutral simulated wastewater sharply declined to 4.1 after pre-treatment with 0.1 mM Fenton reagent (Fe2+:H2O2=1:1) without added acidity. This occurred mainly because the trace homogeneous Fenton reagent induced in situ acid production by organic matter in the wastewater, which supplied the acidic conditions required for the Fenton reaction and ensured that the reaction could proceed continuously. Then, oxidation during the pre-Fenton process enhanced the electrostatic repulsion forces and effectively weakened the hydrogen bonds of organic matter at the membrane surface by altering the net charge and hydroxyl content of organic matter, while coagulation caused the foulants to gather and form large aggregates. These changes diminished the deposition of foulants onto the membrane surface and resulted in a looser fouling layer, which eventually caused the membrane fouling rate to decline from 83 % to 24 % and the flux recovery rate to increase from 44 % to 98 % during 2 h of filtration. This membrane fouling mitigation ability is much superior to that of pre-H2O2, pre-Fe2+ or pre-Fe3+ processes with equivalent doses.
Collapse
Affiliation(s)
- Rui Miao
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Haoxue Ran
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Yifan Yang
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Yanfei Li
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Zhuowen Ma
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Yongtao Lv
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Xiaorong Meng
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Miaolu He
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China.
| |
Collapse
|
4
|
Kim Y, Choi PJ, Jang A. Effect of NaOCl and ClO 2 on seawater desalination using reverse osmosis with cartridge filtration as the pretreatment during the algal bloom. CHEMOSPHERE 2024; 349:140944. [PMID: 38096989 DOI: 10.1016/j.chemosphere.2023.140944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Increased seawater temperature leads to harmful algal blooms (HABs), which releases toxic materials and extracellular polymeric substances (EPS) that are harmful to both humans and the environment. Reverse osmosis (RO) with cartridge filter (CF) as the pretreatment process is often used for desalination process. However, the EPS causes severe fouling on the CF, and RO membrane. Disinfectants, such as NaOCl and ClO2, are commonly used to remove biofouling, because they can oxidize and kill microorganisms. Therefore, our study aims to utilize NaOCl and ClO2 during the CF-RO process to minimize the algal growth within the system and minimize the fouling induced by EPS. Results from this study show that CF can remove more than 50% of protein and 14% of polysaccharides but is not effective in removing toxins. However, with disinfectants, toxic materials were completely oxidized. Improved removal of EPS with CF improved overall performance. The flux reduction in RO process without disinfection was over 60%, however, the flux decline was about 44% and 10% with NaOCl and ClO2, respectively. Both disinfectants were found to be effective, however use of ClO2 is recommended because it is less damaging the membrane, yet more effective in enhancing the performance.
Collapse
Affiliation(s)
- Youjin Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Paula Jungwon Choi
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
5
|
Lin D, Zhang H, Wang Z, Xu D, Li G, Ulbricht M, Liang H. New insights into the influence of pre-oxidation on membrane fouling during nanofiltration of brackish water considering inorganic-organic complexation and oxidant reduction byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167364. [PMID: 37769728 DOI: 10.1016/j.scitotenv.2023.167364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Even though pre-oxidation is usually considered as a promising method to alleviate membrane fouling, information on performance and inner mechanisms of pre-oxidation-influenced membrane fouling during nanofiltration of brackish water is still limited. This study is the first work in which oxidant reduction byproducts and interaction between different pollutants were particularly considered to address these problems. Herein, nanofiltration experiments with different pre-oxidized synthesis brackish water containing inorganic salts and organic pollutants were conducted. Membrane flux results showed that both NaClO and K2FeO4 aggravated membrane fouling, but 0.45 mg/mg TOC KMnO4 mitigated it when simulation results of NICA-Donnan model showed that the complexation between calcium ions and humic acid (HA) was weakened. However, membrane fouling was enhanced by higher dosage of KMnO4. Fourier transform infrared spectrometer using attenuated total reflection (ATR-FTIR) and X-ray diffraction (XRD) spectrum showed that the aggravated membrane fouling was mainly caused by the generation of amorphous manganese oxide, which was oxidant reduction byproduct and had strong capacity for adsorption of HA. Particle size distribution and zeta potential variation indicated that the accumulation of HA could enhance the crystallization process and then the electrostatic attraction between membrane and bulk crystallization was induced. According to SEM images and fitting results of Hermia's models, the already-formed bulk crystallization by 1.90 mg/mg TOC KMnO4 could deposit on membranes more easily, followed by the formation of a denser fouling layer. Overall, the present study provided new insights into the design of reliable pre-oxidation strategies for alleviating membrane fouling during nanofiltration of brackish water.
Collapse
Affiliation(s)
- Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
6
|
Gao Q, Duan L, Jia Y, Zhang H, Liu J, Yang W. A Comprehensive Analysis of the Impact of Inorganic Matter on Membrane Organic Fouling: A Mini Review. MEMBRANES 2023; 13:837. [PMID: 37888009 PMCID: PMC10609035 DOI: 10.3390/membranes13100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Membrane fouling is a non-negligible issue affecting the performance of membrane systems. Particularly, organic fouling is the most persistent and severe form of fouling. The complexation between inorganic and organic matter may exacerbate membrane organic fouling. This mini review systematically analyzes the role of inorganic matter in membrane organic fouling. Inorganic substances, such as metal ions and silica, can interact with organic foulants like humic acids, polysaccharides, and proteins through ionic bonding, hydrogen bonding, coordination, and van der Waals interactions. These interactions facilitate the formation of larger aggregates that exacerbate fouling, especially for reverse osmosis membranes. Molecular simulations using molecular dynamics (MD) and density functional theory (DFT) provide valuable mechanistic insights complementing fouling experiments. Polysaccharide fouling is mainly governed by transparent exopolymer particle (TEP) formations induced by inorganic ion bridging. Inorganic coagulants like aluminum and iron salts mitigate fouling for ultrafiltration but not reverse osmosis membranes. This review summarizes the effects of critical inorganic constituents on fouling by major organic foulants, providing an important reference for membrane fouling modeling and fouling control strategies.
Collapse
Affiliation(s)
- Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jianing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
7
|
Bai Y, Wu YH, Wang RN, Xue S, Chen Z, Hu HY. Critical minority fractions causing membrane fouling in reclaimed water: Fouling characteristics, mechanisms and control strategies. ENVIRONMENT INTERNATIONAL 2023; 173:107818. [PMID: 36812804 DOI: 10.1016/j.envint.2023.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In regard to membrane-based technologies of wastewater reclamation, the reported key foulants were faced with dilemma that they could not be effectively separated and extracted from reclaimed water for thorough investigation. In this study, the crucial foulants were proposed as "critical minority fraction (FCM)", representing the fraction with molecular weight (MW) > 100 kDa which could be easily separated by physical filtration using MW cut-off membrane of 100 kDa with fairly high recovery ratio. FCM with low dissolved organic carbon (DOC) concentration (∼1 mg/L) accounted for less than 20% of the total DOC in reclaimed water, while contributed to more than 90% of the membrane fouling, and thus FCM could be considered as a "perfect criminal" causing membrane fouling. Furthermore, pivotal fouling mechanism was attributed to the significant attractive force between FCM and membranes, which led to severe fouling development due to the aggregation of FCM on membrane surface. Fluorescent chromophores of FCM were concentrated in regions of proteins and soluble microbial products, with proteins and polysaccharides accounted for 45.2% and 25.1% of the total DOC, specifically. FCM was further fractionated into six fractions, among which hydrophobic acids and hydrophobic neutrals were the dominant components in terms of DOC content (∼80%) as well as fouling contribution. Regarding to these pronounced properties of FCM, targeted fouling control strategies including ozonation and coagulation were applied and proved to achieve remarkable fouling control effect. High-performance size-exclusion chromatography results suggested that ozonation achieved distinct transformation of FCM into low MW fractions, while coagulation removed FCM directly, thus leading to effective fouling alleviation. Therefore, the investigation of the critical foulants was expected to help glean valuable insight into the fouling mechanism and develop targeted fouling control technologies in practical applications.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment, Beijing Normal University, Beijing 100875, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Rui-Ning Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Song Xue
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; CSCEC SCIMEE Sci.& Tech. Co., Ltd, Chengdu 610045, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China
| |
Collapse
|
8
|
Stoffel D, Derlon N, Traber J, Staaks C, Heijnen M, Morgenroth E, Jacquin C. Gravity-driven membrane filtration with compact second-life modules daily backwashed: An alternative to conventional ultrafiltration for centralized facilities. WATER RESEARCH X 2023; 18:100178. [PMID: 37250288 PMCID: PMC10214304 DOI: 10.1016/j.wroa.2023.100178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gravity-driven membrane (GDM) filtration is a strategic alternative to conventional ultrafiltration (UF) for the resilient production of drinking water via ultrafiltration when resources become scarce, given the low dependency on energy and chemicals, and longer membrane lifetime. Implementation at large scale requires the use of compact and low-cost membrane modules with high biopolymer removal capacity. We therefore evaluated (1) to what extent stable flux can be obtained with compact membrane modules, i.e., inside-out hollow fiber membranes, and frequent gravity-driven backwash, (2) whether we can reduce membrane expenses by effectively utilizing second-life UF modules, i.e., modules that have been discarded by treatment plant operators because they are no longer under warranty, (3) if biopolymer removal could be maintained when applying a frequent backwash and with second-life modules and (4) which GDM filtration scenarios are economically viable compared to conventional UF, when considering the influence of new or second-life modules, membrane lifetime, stable flux value and energy pricing. Our findings showed that it was possible to maintain stable fluxes around 10 L/m2/h with both new and second-life modules for 142 days, but a daily gravity-driven backwash was necessary and sufficient to compensate the continuous flux drop observed with compact modules. In addition, the backwash did not affect the biopolymer removal. Costs calculations revealed two significant findings: (1) using second-life modules made GDM filtration membrane investment less expensive than conventional UF, despite the higher module requirements for GDM filtration and (2) overall costs of GDM filtration with a gravity-driven backwash were unaffected by energy prices rise, while conventional UF costs rose significantly. The later increased the number of economically viable GDM filtration scenarios, including scenarios with new modules. In summary, we proposed an approach that could make GDM filtration in centralized facilities feasible and increase the range of UF operating conditions to better adapt to increasing environmental and societal constraints.
Collapse
Affiliation(s)
- Deborah Stoffel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Jacqueline Traber
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | | | | | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| | - Céline Jacquin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| |
Collapse
|
9
|
Zhang X, Huang J, Cheng X, Chen H, Liu Q, Yao P, Ngo HH, Nghiem LD. Mitigation of reverse osmosis membrane fouling by electrochemical-microfiltration- activated carbon pretreatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Zhou S, Zhu J, Wang Z, Yang Z, Yang W, Yin Z. Defective MOFs-based electrocatalytic self-cleaning membrane for wastewater reclamation: Enhanced antibiotics removal, membrane fouling control and mechanisms. WATER RESEARCH 2022; 220:118635. [PMID: 35609429 DOI: 10.1016/j.watres.2022.118635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 05/09/2023]
Abstract
In order to resolve the poor antibiotics rejection and serious fouling of ultrafiltration (UF) membrane during municipal wastewater reclamation, a novel anodic membrane (defective UiO-66 (D-UiO-66)/Graphite/Polyvinylidene fluoride (PVDF)) with high pure water flux (596.1 L•h - 1•m - 2•bar-1) was fabricated by incorporating defective zirconium based metal-organic framework (D-UiO-66) and conductive graphite particles into PVDF matrix and applied in the coupling of electro-oxidation and membrane filtration process. Compared to the other anodic membranes (i.e., Graphite/PVDF and UiO-66/Graphite/PVDF), D-UiO-66/Graphite/PVDF possesses superior anti-fouling and self-cleaning abilities (flux recovery=100%, model foulant: bovine serum albumin) in both intermittent and continuous supply of electric field under current density of 0.01 mA/cm2; moreover, efficient antibiotics (tetracycline, norfloxacin, tylosin and sulfamethoxazole) removal (> 96.6%) and bactericidal efficiency against E. coli and S. aureus (100%) were achieved simultaneously without the addition of chemical reagents due to the higher electrocatalytic activity of anodic membrane for oxidation of pollutants by •OH and •O2- free radicals. Three degradation pathways of antibiotics were proposed and the self-cleaning mechanism of membrane was dominated by the synergy of the partial mineralization and the reduced fouling potential of foulants after oxidation as revealed by the increase in hydrophilicity, and decrease in negative charge and molecular weight. The fabricated membrane also presents excellent electrochemical stability, separation and self-cleaning performance for treatment of municipal secondary effluent during long-term filtration with low electric energy consumption, which is promising in wastewater reclamation.
Collapse
Affiliation(s)
- Shihao Zhou
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Carbon and Nitrogen Cycle Processes and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Junwen Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Carbon and Nitrogen Cycle Processes and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Zunrui Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Carbon and Nitrogen Cycle Processes and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Carbon and Nitrogen Cycle Processes and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Carbon and Nitrogen Cycle Processes and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Zhonglong Yin
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Carbon and Nitrogen Cycle Processes and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
11
|
Yin Z, Shao Q, Wen T, Li A, Long C. Insights into the coupling pre-ozonation with coagulation pre-treatment for mitigating biopolymer fouling of reverse osmosis membrane: Role of Ca2+. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Tang P, Shi M, Li X, Zhang Y, Lin D, Li T, Zhang W, Tiraferri A, Liu B. Can pre-ozonation be combined with gravity-driven membrane filtration to treat shale gas wastewater? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149181. [PMID: 34311379 DOI: 10.1016/j.scitotenv.2021.149181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/10/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Low-cost gravity-driven membrane (GDM) filtration has the potential to efficiently manage highly decentralized shale gas wastewater (SGW). In this work, the feasibility of combining low dosage pre-ozonation with the GDM process was evaluated in the treatment of SGW. The results showed that pre-ozonation significantly increased the stable flux (372%) of GDM filtration, while slightly deteriorating the quality of the effluent water in terms of organic content (-14%). These results were mainly attributed to the conversion of macromolecular organics to low-molecular weight fractions by pre-ozonation. Interestingly, pre-ozonation markedly increased the flux (198%) in the first month of operation also for a GDM process added with granular activated carbon (GGDM). Nevertheless, the flux of O3-GGDM systems dropped sharply around the 25th day of operation, which might be due to the rapid accumulation of pollutants in the high flux stage and the formation of a dense fouling layer. Pre-ozonation remarkably influenced the microbial community structure. And O3-GDM systems were characterized by distinct core microorganisms, which might degrade specific organics in SGW. Furthermore, O3-GDM outperformed simple GDM as a pretreatment for RO. These findings can provide valuable references for combining oxidation technologies with the GDM process in treating refractory wastewater.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Mengchao Shi
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Xin Li
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Yongli Zhang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Dong Lin
- PetroChina Southwest Oil and Gas field Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - Tong Li
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
13
|
Miao R, Feng Y, Wang Y, Wang P, Li P, Li X, Wang L. Exploring the influence mechanism of ozonation on protein fouling of ultrafiltration membranes as a result of the interfacial interaction of foulants at the membrane surface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147340. [PMID: 33930806 DOI: 10.1016/j.scitotenv.2021.147340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 05/09/2023]
Abstract
Ozonation was widely used before ultrafiltration processes, but its effect mechanism on protein fouling is still controversial. Ozonation of bovine serum albumin (BSA) solutions was performed in the present work. The interfacial forces of BSA at the membrane surface were measured before and after ozonation. The adsorption behaviour of BSA onto the membrane surface and the fouling layer structures under different ozone dosages were also investigated. These results were combined with the membrane fouling behaviour to identify the effect of ozonation on protein fouling. The results showed that ozonation could weaken the interaction forces between the membrane and BSA effectively, but this did not have any effect on membrane fouling. In contrast, in terms of membrane fouling behaviour after pre-ozonation, the contribution of the changes in the covalent disulfide bonds between BSA molecules outweighs those of the non-covalent bonds. The number of disulfide bonds gradually increased as the O3:DOC ratio increased from 0 to 0.3, and began to decline when the O3:DOC ratio was further increased to 0.45 and 0.6. This could have altered the deposition rate of foulants onto the membrane surface and the structure of the fouling layers, and may have caused the membrane fouling first to be enhanced and then to decline with increasing ozone dosages.
Collapse
Affiliation(s)
- Rui Miao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China; Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Yaya Feng
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China
| | - Yupeng Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China
| | - Pei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China; Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pu Li
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaoyan Li
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China
| |
Collapse
|
14
|
Udayakumar GP, Muthusamy S, Selvaganesh B, Sivarajasekar N, Rambabu K, Sivamani S, Sivakumar N, Maran JP, Hosseini-Bandegharaei A. Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment. Biotechnol Adv 2021; 52:107815. [PMID: 34400260 DOI: 10.1016/j.biotechadv.2021.107815] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/16/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
Over the past few decades, the term polymer has been repeatedly used in several industries for their immense characteristics in different applications. Polymers and their composites which were prepared from chemical monomer sources turned out to be potentially harmful to the environment due to their tedious degradation process. Biopolymers are natural substitutes for synthetic polymers which can be efficiently extricated from natural sources. They are predominantly available as polymeric units as well as monomeric units that are linked covalently. These environment-friendly biopolymers and their composites can be categorized based on their numerous sources, different methods of preparation and their potential form of usage. They were found to be biocompatible and biodegradable which make them exceptionally useful in environment based applications, mainly in the process of water treatment, both potable and wastewater. Further, the biopolymer and biopolymer composites easily fit into different parts of the treatment process by acting as filtration media, adsorbents, coagulants and as flocculants. The primary focus of this review is to provide a comprehensive information of biopolymers and biopolymer composites from synthesis to their usefulness for their productive application in water treatment processes. On the whole, it can be substantiated that the biopolymers were identified to play a notable adversary to the synthetic polymers in treating waters with an indispensable need for an elaborative study in the production of the biopolymers.
Collapse
Affiliation(s)
- Gowthama Prabu Udayakumar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Subbulakshmi Muthusamy
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Bharathi Selvaganesh
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - N Sivarajasekar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.
| | | | - Selvaraju Sivamani
- Chemical Engineering Section, Engineering Department, Salalah College of Technology, Salalah, Oman.
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - J Prakash Maran
- Department of Food Science and Nutrition, Periyar University, Salem. India.
| | | |
Collapse
|
15
|
Miao R, Ma B, Li P, Wang P, Wang L, Li XY. Mitigation mechanism of ozonation in the casein fouling of ultrafiltration membranes: Possible application in dairy wastewater treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Miao R, Zhou Y, Wang P, Lu W, Li P, Li X, Wang L. A comparison of effect mechanisms of chlorination and ozonation on the interfacial forces of protein at membrane surfaces and the implications for membrane fouling control. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ouali S, Loulergue P, Biard PF, Nasrallah N, Szymczyk A. Ozone compatibility with polymer nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Li B, He X, Wang P, Liu Q, Qiu W, Ma J. Opposite impacts of K + and Ca 2+ on membrane fouling by humic acid and cleaning process: Evaluation and mechanism investigation. WATER RESEARCH 2020; 183:116006. [PMID: 32585389 DOI: 10.1016/j.watres.2020.116006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/17/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Understanding the influences of cations on membrane fouling was important to improve the performance of membrane filtration system, however, opposite conclusions were made in different studies. Meanwhile, although the influences of cation concentration have been studied extensively, few attentions have been paid to the cation valence. To clarify it, the effects of typical cations on membrane fouling and cleaning, as well as the related mechanisms were investigated systemically in this study. K+ and Ca2+ were chosen as the representative cations, and humic acid (HA) was chosen as the membrane foulants. The results demonstrated Ca2+ promoted the formation of reversible fouling, meanwhile higher removal efficiency of HA could also be achieved with the assistance of filtration cake containing HA + Ca2+. However, K+ led to the formation of more recalcitrant irreversible fouling. By comparing the concentration of cations in feed and permeate, analyzing the influence of cations on size of HA flocs, and the detailed SEM, AFM and TEM observation, it could be found that different mechanisms dominated the interaction between cations and HA. The bridging effect induced by Ca2+ attributed to the extension of HA molecules, while the electrostatic shielding effect induced by K+ led to the compression of them. Moreover, the different characteristics of hydrated Ca2+ and K+ also contributed to the different structures of foulant layers formed by HA + Ca2+ and HA + K+. Given the abundance of K+ and Ca2+ in natural water, results of this study can provide valuable advice for practical membrane filtration process.
Collapse
Affiliation(s)
- Boda Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xu He
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Panpan Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Qiu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
19
|
Yin Z, Wen T, Li Y, Li A, Long C. Pre-ozonation for the mitigation of reverse osmosis (RO) membrane fouling by biopolymer: The roles of Ca 2+ and Mg 2. WATER RESEARCH 2020; 171:115437. [PMID: 31893554 DOI: 10.1016/j.watres.2019.115437] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Despite plenty of literatures focused on the application of pre-ozonation prior to membrane, it was still unclear about the role of divalent cations (Ca2+ and Mg2+) in reverse osmosis (RO) membrane fouling mitigation. In this study, ozone pre-treatment (0.10, 0.25 and 0.50 mg O3/mg DOC (dissolved organic carbon)) was employed to oxidize model biopolymer, which was represented by bovine serum albumin (BSA) and sodium alginate (SA) in the presence of Ca2+ and Mg2+ (0.5, 1.0 and 2.0 mM). Cross-flow filtration was conducted to investigate RO membrane fouling by concentration mode. The results showed that at appropriate ozone dose there were measurable changes in physicochemical properties of BSA and SA, including increases in particle size, hydrophilicity, density of negative charge and carboxylic groups. Pre-ozonation markedly alleviated RO fouling by BSA at ozone dose of 0.25 mg O3/mg DOC when Ca2+ and Mg2+ concentrations raised from 0.5 to 2.0 mM since the increase in electrostatic (EL) repulsion and decrease in hydrophobic (HP) interaction compensated the increase in divalent cation bridging. Similar results were obtained for SA fouling in the presence of Mg2+. In contrast, the effect of pre-ozonation on SA fouling strongly depended on the concentration of Ca2+. In brief, it mitigated SA fouling at 0.5 mM Ca2+, whereas accelerated irreversible fouling at higher Ca2+ concentration (1.0 and 2.0 mM) due to the overwhelming effect of divalent cation bridging compared to EL and HP interactions, as revealed by adsorption experiments (in-situ streaming potential measurement). Pre-ozonation shifted the fouling layer from compact to porous and weakened the adhesion forces between foulants and membrane (foulants) except for SA containing 1.0 and 2.0 mM Ca2+. This study may provide the guidance for the application of pre-ozonation prior to RO filtration.
Collapse
Affiliation(s)
- Zhonglong Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|