1
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Wang Y, Wang S, Sui Z, Gu Y, Zhang Y, Gao J, Lei Y, Zhao J, Li N, Wu J, Wang Z. "Fishbone" Design of Amino/N-Spirocyclic Cations toward High-Performance Poly(triphenylene piperidine) Anion-Exchange Membranes for Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4003-4012. [PMID: 38207002 DOI: 10.1021/acsami.3c16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
N-Spirocyclic cations have excellent alkali resistance stability, and precise design of the structure of N-spirocyclic anion-exchange membranes (AEMs) improves their comprehensive performance. Here, we design and synthesize high-performance poly(triphenylene piperidine) membranes based on the "fishbone" design of amino/N-spirocyclic cations. The "fishbone" design does not disrupt the overall stabilized conformation but promotes a microphase separation structure, while exerting the synergistic effect of piperidine cations and spirocyclic cations, resulting in a membrane with good conductivity and alkali resistance stability. The hydroxide conductivity of the QPTPip-ASU-X membrane reached up to 133.5 mS cm-1 at 80 °C. The QPTPip-ASU-15 membrane was immersed in a 2 M NaOH solution at 80 °C for 1200 h, and the conductivity was maintained at 91.02%. In addition, the QPTPip-ASU-5 membrane had the highest peak power density of 255 mW cm-2.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Song Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhiyan Sui
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yiman Gu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yanchao Zhang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Jian Gao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yijia Lei
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Jialin Zhao
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Na Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - JingYi Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhe Wang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
- Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun 130012, China
| |
Collapse
|
3
|
Jin Z, Zou X, Xu G, Sun Z, Yan F. Semi-Interpenetrating Network Anion Exchange Membranes by Thiol-Ene Coupling Reaction for Alkaline Fuel Cells and Water Electrolyzers. Molecules 2023; 28:5470. [PMID: 37513341 PMCID: PMC10385286 DOI: 10.3390/molecules28145470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
In this work, a thiol-ene coupling reaction was employed to prepare the semi-interpenetrating polymer network AEMs. The obtained QP-1/2 membrane exhibits high hydroxide conductivity (162.5 mS cm-1 at 80 °C) with a relatively lower swelling ratio, demonstrating its mechanical strength of 42 MPa. This membrane is noteworthy for its improved alkaline stability, as the semi-interpenetrating network effectively limits the attack of hydroxide. Even after being treated in 2 M NaOH at 80 °C for 600 h, 82.5% of the hydroxide conductivity is maintained. The H2/O2 fuel cell with QP-1/2 membrane displays a peak power density of 521 mW cm-2. Alkaline water electrolyzers based on QP-1/2 membrane demonstrated a current density of 1460 mA cm-2 at a cell voltage of 2.00 V using NiCoFe catalysts in the anode. All the results demonstrate that a semi-interpenetrating structure is a promising way to enhance the mechanical property, ionic conductivity, and alkaline stability of AEMs for the application of alkaline fuel cells and water electrolyzers.
Collapse
Affiliation(s)
- Zhiyu Jin
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guodong Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Duan X, Zhu X, Li G, Xia R, Qian J, Ge Q. Pyrrolidinium-Based Hyperbranched Anion Exchange Membranes with Controllable Microphase Separated Morphology for Alkaline Fuel Cells. Macromol Rapid Commun 2023; 44:e2200669. [PMID: 36153849 DOI: 10.1002/marc.202200669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Indexed: 11/07/2022]
Abstract
It is well acknowledged that the microphase-separated morphology of anion exchange membranes (AEMs) is of vital importance for membrane properties utilized in alkaline fuel cells. Herein, a rigid macromolecule poly(methyldiallylamine) (PMDA) is incorporated to regulate the microphase morphology of hyperbranched AEMs. As expected, the hyperbranched poly(vinylbenzyl chloride) (HB-PVBC) is guided to distribute along PMDA chains, and longer PMDA cha leads to a more distinct microphase morphology with interconnected ionic channels. Consequently, high chloride conductivity of 10.49 mS cm-1 at 30 °C and suppressed water swelling ratio lower than 30% at 80 °C are obtained. Furthermore, the β-H of pyrrolidinium cations in the non-antiperiplanar position increases the energy barrier of β-H elimination, leading to conformationally disfavored Hofmann elimination and increased alkaline stability. This strategy is anticipated to provide a feasible way for preparing hyperbranched AEMs with clear microphase morphology and good overall properties for alkaline fuel cells.
Collapse
Affiliation(s)
- Xiaoqin Duan
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Xiang Zhu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Gege Li
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Qianqian Ge
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
5
|
Min K, Lee Y, Choi Y, Kwon OJ, Kim TH. High-performance anion exchange membranes achieved by crosslinking two aryl ether-free polymers: poly(bibenzyl N-methyl piperidine) and SEBS. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Su X, Wang J, Xu S, Zhang D, He R. Construction of macromolecule cross-linked anion exchange membranes containing free radical inhibitor groups for superior chemical stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Min K, Chae JE, Lee Y, Kim HJ, Kim TH. Crosslinked poly(m-terphenyl N-methyl piperidinium)-SEBS membranes with aryl-ether free and kinked backbones as highly stable and conductive anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Wang S, Wang Z, Xu J, Liu Q, Sui Z, Du X, Cui Y, Yuan Y, Yu J, Wang Y, Chang Y. Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Development of rigid side-chain poly(ether sulfone)s based anion exchange membrane with multiple annular quaternary ammonium ion groups for fuel cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Li L, Zhang N, Wang JA, Ma L, Bai L, Zhang A, Chen Y, Hao C, Yan X, Zhang F, He G. Stable alkoxy chain enhanced anion exchange membrane and its fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Du S, Huang S, Xie N, Zhang T, Xu Y, Ning X, Chen P, Chen X, An Z. New block poly(ether sulfone) based anion exchange membranes with rigid side-chains and high-density quaternary ammonium groups for fuel cell application. Polym Chem 2022. [DOI: 10.1039/d2py00588c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a series of novel poly(ether sulfone) based anion exchange membranes (AEMs) with relatively good stability due to their rigid side-chains and heterocyclic quaternary ammonium groups. The AEMs show appropriate performance in AEM fuel cells.
Collapse
Affiliation(s)
- Shenghua Du
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Shuai Huang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Ning Xie
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Tong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Yaoyao Xu
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xingming Ning
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| |
Collapse
|
12
|
Liang X, Ge X, He Y, Xu M, Shehzad MA, Sheng F, Bance‐Soualhi R, Zhang J, Yu W, Ge Z, Wei C, Song W, Peng J, Varcoe JR, Wu L, Xu T. 3D-Zipped Interface: In Situ Covalent-Locking for High Performance of Anion Exchange Membrane Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102637. [PMID: 34636177 PMCID: PMC8596103 DOI: 10.1002/advs.202102637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2 ) and zero emissions of greenhouse gas (CO2 ). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long-term stabilities. Here, a 3D-interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl-terminated bi-cationic quaternary-ammonium-based polyelectrolyte is employed as both the anionomer in the anion-exchange membrane (AEM) and catalyst layers. A quaternary-ammonium-containing covalently locked interface is formed by thermally induced inter-crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D-zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H2 /O2 AEMFC test demonstration shows promisingly high power densities (1.5 W cm-2 at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm-2 .
Collapse
Affiliation(s)
- Xian Liang
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
- School of Chemistry and Material EngineeringHuainan Normal UniversityHuainanAnhui232001P. R. China
| | - Xiaolin Ge
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Yubin He
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Mai Xu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
- School of Chemistry and Material EngineeringHuainan Normal UniversityHuainanAnhui232001P. R. China
| | - Muhammad A. Shehzad
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Fangmeng Sheng
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | | | - Jianjun Zhang
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Weisheng Yu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Zijuan Ge
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Chengpeng Wei
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Wanjie Song
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Jinlan Peng
- The Center for Micro‐ and Nanoscale Research and FabricationUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - John R. Varcoe
- Department of ChemistryUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Liang Wu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| |
Collapse
|
13
|
Lin C, Cheng W, Miao X, Shen X, Ling L. Clustered piperidinium-functionalized poly(terphenylene) anion exchange membranes with well-developed conductive nanochannels. J Colloid Interface Sci 2021; 608:1247-1256. [PMID: 34739988 DOI: 10.1016/j.jcis.2021.10.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Anion exchange membrane fuel cells (AEMFCs) attract considerable attention owing to their high-power density and potential utilization of cheap non-noble metal catalysts. However, anion exchange membranes (AEMs) still face the problems of low conductivity, poor dimensional and chemical stability. To address these issues, AEMs with clustered piperidinium groups and ether-bond-free poly(terphenylene) backbone (3QPAP-x, x = 0.3, 0.4, and 0.5) were designed. Transmission electron microscope results show that the clustered ionic groups are responsible for fabricating well-developed conductive nanochannels and restraining the swelling behavior of the membranes. 3QPAP-0.4 and 3QPAP-0.5 AEMs exhibit higher conductivity (117.5 mS cm-1, 80 °C) and lower swelling ratio than that of commercial FAA-3-50 (80.4 mS cm-1, 80 °C). The conductivity of 3QPAP-0.5 only decreased by 10.4% after treating with 1 M NaOH at 80 °C for 720 h. The Hofmann elimination degradation of the cationic groups is restrained by the long flexible alkyl chain between cations. Based on the high performance of 3QPAP-0.5, an H2-O2-type AEMFC reaches 291.2 mW cm-2 (60 °C), which demonstrates that the as-prepared AEMs are promising for application in fuel cells.
Collapse
Affiliation(s)
- Chenxiao Lin
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz, Berlin 14109, Germany.
| | - Wenxue Cheng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xinxin Miao
- School of Management, Wenzhou Business College, Wenzhou 325035, China.
| | - Xingchen Shen
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021 Karlsruhe, Germany.
| | - Liming Ling
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
14
|
Ma L, Hussain M, Li L, Qaisrani NA, Bai L, Jia Y, Yan X, Zhang F, He G. Octopus-like side chain grafted poly(arylene piperidinium) membranes for fuel cell application. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Arunachalam M, Sinopoli A, Aidoudi F, Creager SE, Smith R, Merzougui B, Aïssa B. High Performance of Anion Exchange Blend Membranes Based on Novel Phosphonium Cation Polymers for All-Vanadium Redox Flow Battery Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45935-45943. [PMID: 34533936 DOI: 10.1021/acsami.1c10872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The deployment of alkaline anion exchange membranes (AEMs) in flow battery applications has the advantage of a low cationic species crossover rate. However, the alkaline stability conjugated to the low conductivity of hydroxide ions of anion exchange membranes (AEMs) still represents a major drawback for the large deployment of such technology. In this study, three types of tetraarylpolyphosphonium (pTAP)-based copolymers (namely, CP1, CP2, and CP3) are synthesized and blended with chitosan and polyvinylidene fluoride (PVDF) for the fabrication of AEMs. Chitosan, a green biopolymer, was employed as a blend to enhance the water uptake of the base ionomer matrix. It is proposed that the abundancy of hydroxyl groups in chitosan improves considerably the ionic conductivity, water transport, and ion selectivity of the membrane, together with facilitating the dispersion of the chitosan in the pTAP copolymer matrix. The purpose of blending PVDF is instead to provide stable mechanical strength to the composite blend. The chemical, mechanical, and thermal stabilities of the three fabricated composite-blend membranes (i.e., CM1, CM2, and CM3) were characterized. All the membranes exhibited a high water retaining capacity of up to 36.26% (recorded for CM2) along with a hydroxyl ion conductivity of 17.39 mS cm-1. Due to the strong interactions between pTAP copolymers, chitosan, and PVDF polymers (confirmed also by Fourier transform infrared spectroscopy), the studied anion exchange membranes are able to retain up to 97% of the original OH conductivity after 1 M KOH treatment at room temperature for 100 h. The three membranes, namely, CM1, CM2, and CM3, have vanadium ion permeabilities measured at 20 °C of 1.775 × 10-8, 1.718 × 10-8, and 1.648 × 10-8 cm2/s, respectively, which are lower than that for the commercially available Nafion. The good stability and remarkable cell performance of the composite-blend membranes reported here make them definitely excellent candidates for the future generation of vanadium redox flow batteries.
Collapse
Affiliation(s)
- Muthumeenal Arunachalam
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Alessandro Sinopoli
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Farida Aidoudi
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Stephen E Creager
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, 105 Sikes Hall, Clemson, South Carolina 29634, United States
| | - Rhett Smith
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, 105 Sikes Hall, Clemson, South Carolina 29634, United States
| | - Belabbes Merzougui
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Brahim Aïssa
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
16
|
Wu J, Wei X, Jiang H, Zhu Y. Synthesis and properties of anion conductive polymers containing dual quaternary ammonium groups without beta-hydrogen via CuAAC click chemistry. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Xue J, Zhang J, Liu X, Huang T, Jiang H, Yin Y, Qin Y, Guiver MD. Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00105-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Anion exchange membrane based on poly(arylene ether ketone) containing long alkyl densely quaternized carbazole derivative pendant. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
He X, Zou J, Guo Y, Wang K, Wu B, Wen Y, Zang X, Chen D. Synthesis of halogenated benzonorbornadiene monomer and preparation of self-crosslinking bisimidazole cationic functionalized benzonorbornadiene triblock copolymer anion exchange membrane. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
|
21
|
Wang F, Li Y, Li C, Zhu H. Preparation and study of spirocyclic cationic side chain functionalized polybiphenyl piperidine anion exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Zhang Y, Chen W, Li T, Yan X, Zhang F, Wang X, Wu X, Pang B, He G. Tuning hydrogen bond and flexibility of N-spirocyclic cationic spacer for high performance anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118507] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|