1
|
Lee S, Laris OA, Hjelvik EA, Hoek EMV, Straub AP. High Pressure Resistance in Omniphobic Distillation Membranes with Re-entrant Nanostructures. NANO LETTERS 2025; 25:7170-7177. [PMID: 40251708 DOI: 10.1021/acs.nanolett.5c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
We developed pressure-resistant omniphobic membranes that enable stable distillation of low-surface-tension liquids at applied pressures exceeding 15 bar. Membranes were synthesized by grafting re-entrant nanostructures onto porous alumina membranes, followed by hydrophobic modification. The membranes exhibited a high liquid entry pressure of 36.2 bar with water and withstood an applied pressure up to 15.5 bar with a low-surface-tension 15 wt % ethanol-water mixture. Simulations revealed that the enhanced wetting resistance is due to the presence of re-entrant structures, which facilitated a 220% increase in wetting pressure for the low-surface-tension liquid compared to a control membrane with cylindrical pores. We further demonstrated stable pressure-driven distillation of low-surface-tension liquids, achieving higher than 97% salt rejection. This work is the first demonstration of distillation membranes operating with low-surface-tension liquids under high applied pressures and provides critical validation of wettability theory under extreme pressures.
Collapse
Affiliation(s)
- Sangsuk Lee
- Department of Civil, Environmental & Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Omar A Laris
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Elizabeth A Hjelvik
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Eric M V Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Anthony P Straub
- Department of Civil, Environmental & Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Alipanahrostami M, Coolidge C, Wang Y, Wang W, Tong T. Minimizing the Use of Per- and Polyfluoroalkyl Substances for Textured Wetting-Resistant Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3355-3365. [PMID: 39957599 DOI: 10.1021/acs.est.4c08343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used as synthetic chemicals to create textured wetting-resistant surfaces, which have a broad range of applications including omniphobic membranes, self-cleaning textiles, and anticorrosion coatings. However, the high persistence, toxicity, and bioaccumulation potential of PFAS have led to rising public concerns and stringent regulations, especially after the U.S. Environmental Protection Agency (USEPA) announced legally enforceable maximum contamination levels for six PFAS species in April 2024. In this paper, we provide our perspective that the use of PFAS can be avoided in the fabrication of textured omniphobic and superomniphobic surfaces, which display high wetting resistance against not only high surface tension liquids but also more importantly low surface tension liquids. We first discuss the role of PFAS in the design of conventional wetting-resistant surfaces. We then discuss the state-of-the-art strategies for creating PFAS-free textured omniphobic and superomniphobic surfaces with high wetting resistance while elucidating the underlying mechanism. Further, we emphasize that PFAS are indeed not always needed for textured surfaces with a sufficiently high wetting resistance in specific environmental applications such as desalination and wastewater treatment. We envision that this paper will motivate the scientific community to rethink and revolutionize the design framework toward more sustainable wetting-resistant surfaces, thereby circumventing the use of PFAS and the consequent health and environmental risks.
Collapse
Affiliation(s)
- Mohammad Alipanahrostami
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Connor Coolidge
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yuqi Wang
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Wei Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Guo J, Jiang M, Li X, Farid MU, Deka BJ, Zhang B, Sun J, Wang Z, Yi C, Wong PW, Jeong S, Gu B, An AK. Springtail-inspired omniphobic slippery membrane with nano-concave re-entrant structures for membrane distillation. Nat Commun 2024; 15:7750. [PMID: 39237575 PMCID: PMC11377731 DOI: 10.1038/s41467-024-52108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Omniphobic membranes, due to their exceptional properties, have drawn significant attention for overcoming the bottleneck in membrane distillation (MD) technology. This study demonstrates an innovative method for fabricating an omniphobic membrane that is simple and facile compared to other methods such as wet/dry etching and photolithography. The surface morphology of springtails was imitated using electrospraying technique to coat a polyvinylidene fluoride substrate with concave-shaped polystyrene beads that were successfully developed by controlling the electrical traction (voltage) and air resistance (humidity). Then, the lipid coating of springtail surfaces was mimicked by dip-coating the membrane in a low-toxicity short-chain perfluoropolyether lubricant. The concave structure's tiny air pockets increased membrane hydrophobicity significantly, indicated by the fact that the first round of water bouncing took only 16.3 ms. Finally, in MD treatment of seawater containing 1.0 mM sodium dodecyl sulfate, the optimized omniphobic membrane maintained a stable 99.9% salt rejection rate.
Collapse
Affiliation(s)
- Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Mengnan Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Xiaolu Li
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Baoping Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Chunhai Yi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Environmental Engineering, Pusan National University, Pusan, South Korea
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju, South Korea
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
5
|
Yang X, Zhang N, Zhang J, Liu W, Zhao M, Lin S, Wang Z. Nanocomposite Hydrogel Engineered Janus Membrane for Membrane Distillation with Robust Fouling, Wetting, and Scaling Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15725-15735. [PMID: 37787747 DOI: 10.1021/acs.est.3c04540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Membrane distillation (MD) is considered to be rather promising for high-salinity wastewater reclamation. However, its practical viability is seriously challenged by membrane wetting, fouling, and scaling issues arising from the complex components of hypersaline wastewater. It remains extremely difficult to overcome all three challenges at the same time. Herein, a nanocomposite hydrogel engineered Janus membrane has been facilely constructed for desired wetting/fouling/scaling-free properties, where a cellulose nanocrystal (CNC) composite hydrogel layer is formed in situ atop a microporous hydrophobic polytetrafluoroethylene (PTFE) substrate intermediated by an adhesive layer. By the synergies of the elevated membrane liquid entry pressure, inhibited surfactant diffusion, and highly hydratable surface imparted by the hydrogel/CNC (HC) layer, the resultant HC-PTFE membrane exhibits robust resistance to surfactant-induced wetting and oil fouling during 120 h of MD operation. Meanwhile, owing to the dense and hydroxyl-abundant surface, it is capable of mitigating gypsum scaling and scaling-induced wetting, resulting in a high normalized flux and low distillate conductivity at a concentration factor of 5.2. Importantly, the HC-PTFE membrane enables direct desalination of real hypersaline wastewater containing broad-spectrum foulants with stable vapor flux and robust salt rejection (99.90%) during long-term operation, demonstrating its great potential for wastewater management in industrial scenarios.
Collapse
Affiliation(s)
- Xin Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Weifan Liu
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Mingwei Zhao
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, School of Petroleum Engineering, China University of Petro1eum (East China), Qingdao 266580, People's Republic of China
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
6
|
Jia Y, Guan K, Mai Z, Fang S, Li Z, Zhang P, Zou D, Jiang X, He G, Matsuyama H. Thin continuous membrane coating with high surface energy for comprehensive antifouling seawater distillation. WATER RESEARCH 2023; 244:120439. [PMID: 37579566 DOI: 10.1016/j.watres.2023.120439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Membrane distillation (MD) has prominent advantages such as treating high-salinity wastewater with a low-grade thermal energy, high salt rejection, and zero discharge. However, organic fouling and mineral scaling are two major challenges for hydrophobic MD membranes when used for practical applications. Commonly, improving organic fouling- and mineral scaling-resistance require oppositely enhanced wetting properties of membrane, thus is difficult to simultaneously realize dual resistance with one membrane. Here, we proposed to use underwater thermodynamically stable high-surface-energy coating to modify the hydrophobic membrane with Janus structures comprising different surface energy. The underlayered structure meets the hydrophobicity requirements of the MD membrane, while the coating layer realizes dual resistance to organic and inorganic foulants. Theoretical analysis and experimental proof reveal that the membrane with the high-surface-energy coating layer outperforms the pristine one with approximately 10 times of longevity. This strategy provides a new way for the use of high-surface-energy materials in versatilely fouling-resistant MD process.
Collapse
Affiliation(s)
- Yuandong Jia
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Shang Fang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Pengfei Zhang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Dong Zou
- School of Environmental Science and Engineering, Nanjing Tech University, No.30 South Puzhu Road, Nanjing 211816, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
7
|
Tan YZ, Alias NH, Aziz MHA, Jaafar J, Othman FEC, Chew JW. Progress on Improved Fouling Resistance-Nanofibrous Membrane for Membrane Distillation: A Mini-Review. MEMBRANES 2023; 13:727. [PMID: 37623788 PMCID: PMC10456459 DOI: 10.3390/membranes13080727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Nanofibrous membranes for membrane distillation (MD) have demonstrated promising results in treating various water and wastewater streams. Significant progress has been made in recent decades because of the development of sophisticated membrane materials, such as superhydrophobic, omniphobic and Janus membranes. However, fouling and wetting remain crucial issues for long-term operation. This mini-review summarizes ideas as well as their limitations in understanding the fouling in membrane distillation, comprising organic, inorganic and biofouling. This review also provides progress in developing antifouling nanofibrous membranes for membrane distillation and ongoing modifications on nanofiber membranes for improved membrane distillation performance. Lastly, challenges and future ways to develop antifouling nanofiber membranes for MD application have been systematically elaborated. The present mini-review will interest scientists and engineers searching for the progress in MD development and its solutions to the MD fouling issues.
Collapse
Affiliation(s)
- Yong Zen Tan
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| | - Nur Hashimah Alias
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Mohd Haiqal Abd Aziz
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub Muar, Batu Pahat 84600, Johor, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Faten Ermala Che Othman
- Digital Manufacturing & Design Center (DManD), Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore;
| | - Jia Wei Chew
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Singapore Membrane Technology Center, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
8
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
9
|
Li M, Cao Y, Zhang X. Hierarchically Structured Nanoparticle-Free Omniphobic Membrane for High-Performance Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5841-5851. [PMID: 36989064 DOI: 10.1021/acs.est.2c07880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The functional loss of membranes caused by pore wetting, mineral scaling, or structural instability is a critical challenge in membrane distillation (MD), which primarily hinders its practical applications. Herein, we propose a novel and facile strategy to fabricate omniphobic membranes with exceptionally robust MD performance. Specifically, a substrate with a hierarchical re-entrant architecture was constructed via spray-water-assisted non-solvent-induced phase separation (SWNIPS), followed by a direct fluorinated surface decoration via "thiol-ene" click chemistry. Deionized (DI) water contact angle measurements revealed an ultrahigh surface water contact angle (166.8 ± 1.8°) and an ultralow sliding angle (3.6 ± 1.1°) of the resultant membrane. Destructive abrasion cycle and ultrasonication tests confirmed its structural robustness. Moreover, the membrane possessed excellent wetting resistance, as evidenced by the prevention of membrane pore penetration by all low-surface-tension testing liquids, allowing stable long-term MD operation to treat brine wastewater with a surfactant content of 0.6 mM. In a desalination experiment using shale gas wastewater, the omniphobic membrane exhibited robust MD performance, achieving a high water recovery ratio of ∼60% without apparent changes in water flux and permeate conductivity over the entire membrane process. Overall, our study paves the way for a nanoparticle-free methodology for the scalable fabrication of high-performance MD membranes with surface omniphobicity and structural robustness in hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yang Cao
- Customs Targeting Bureau, Nanjing Customs District, Nanjing 210001, China
| | - Xuan Zhang
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
10
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
11
|
An omniphobic membrane with macro-corrugation for the treatment of real pharmaceutical wastewater via membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
12
|
Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Wae AbdulKadir WAF, Ahmad AL, Ooi BS. Hydrophobic Montmorillonite/PVDF Membrane: Experimental Investigation of Membrane Synthesis toward Wetting Characterization and Performance via DCMD. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Sangeetha V, Kaleekkal NJ, Vigneswaran S. Coaxial Electrospun Nanofibrous Membranes for Enhanced Water Recovery by Direct Contact Membrane Distillation. Polymers (Basel) 2022; 14:5350. [PMID: 36559716 PMCID: PMC9784477 DOI: 10.3390/polym14245350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Membrane distillation (MD) is an emerging technology for water recovery from hypersaline wastewater. Membrane scaling and wetting are the drawbacks that prevent the widespread implementation of the MD process. In this study, coaxially electrospun polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP) nanofibrous membranes were fabricated with re-entrant architecture and enhanced hydrophobicity/omniphobicity. The multiscale roughness was constructed by incorporating Al2O3 nanoparticles and 1H, 1H, 2H, 2H Perfluorodecyltriethoxysilane in the sheath solution. High resolution transmission electron microscopy (HR-TEM) could confirm the formation of the core-sheath nanofibrous membranes, which exhibited a water contact angle of ~142.5° and enhanced surface roughness. The membrane displayed a stable vapor flux of 12 L.m−2.h−1 (LMH) for a 7.0 wt.% NaCl feed solution and no loss in permeate quality or quantity. Long-term water recovery from 10.5 wt.% NaCl feed solution was determined to be 8−10 LMH with >99.9% NaCl rejection for up to 5 cycles of operation (60 h). The membranes exhibited excellent resistance to wetting even above the critical micelle concentration (CMC) for surfactants in the order sodium dodecyl sulphate (SDS) (16 mM) > cetyltrimethylammonium bromide (CTAB) (1.5 mM) > Tween 80 (0.10 mM). The presence of salts further deteriorated membrane performance for SDS (12 mM) and Tween-80 (0.05 mM). These coaxial electrospun nanofibrous membranes are robust and can be explored for long-term applications.
Collapse
Affiliation(s)
- Vivekanandan Sangeetha
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Saravanamuthu Vigneswaran
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
15
|
Vahabi H, Vallabhuneni S, Hedayati M, Wang W, Krapf D, Kipper MJ, Miljkovic N, Kota AK. Designing Non-Textured, All-Solid, Slippery Hydrophilic Surfaces. MATTER 2022; 5:4502-4512. [PMID: 36569514 PMCID: PMC9784614 DOI: 10.1016/j.matt.2022.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Slippery surfaces are sought after due to their wide range of applications in self-cleaning, drag reduction, fouling-resistance, enhanced condensation, biomedical implants etc. Recently, non-textured, all-solid, slippery surfaces have gained significant attention because of their advantages over super-repellent surfaces and lubricant-infused surfaces. Currently, almost all non-textured, all-solid, slippery surfaces are hydrophobic. In this work, we elucidate the systematic design of non-textured, all-solid, slippery hydrophilic (SLIC) surfaces by covalently grafting polyethylene glycol (PEG) brushes to smooth substrates. Furthermore, we postulate a plateau in slipperiness above a critical grafting density, which occurs when the tethered brush size is equal to the inter-tether distance. Our SLIC surfaces demonstrate exceptional performance in condensation and fouling-resistance compared to non-slippery hydrophilic surfaces and slippery hydrophobic surfaces. Based on these results, SLIC surfaces constitute an emerging class of surfaces with the potential to benefit multiple technological landscapes ranging from thermofluidics to biofluidics.
Collapse
Affiliation(s)
- Hamed Vahabi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- These authors contributed equally
| | - Sravanthi Vallabhuneni
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- These authors contributed equally
| | - Mohammadhasan Hedayati
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Wei Wang
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, Department of Electrical and Computer Engineering, Materials Research Laboratory, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA
- International Institute of Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukoka 819-0395, Japan
| | - Arun K. Kota
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Lead contact
| |
Collapse
|
16
|
Liu D, Liu P, Liu D, Zhao J, Zhang T, Zhong L, Sun F, Liu J, Wang W. Binder-free in-situ reinforced nanofibrous membrane with anti-deformable pore structures for seawater concentration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Tandel AM, Rawda N, Deng E, Lin H. Ultrathin-film composite (uTFC) membranes based on amorphous perfluoropolymers for liquid separations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Yin Y, Li T, Zuo K, Liu X, Lin S, Yao Y, Tong T. Which Surface Is More Scaling Resistant? A Closer Look at Nucleation Theories for Heterogeneous Gypsum Nucleation in Aqueous Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16315-16324. [PMID: 36305705 DOI: 10.1021/acs.est.2c06560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing engineered surfaces with scaling resistance is an effective means to inhibit surface-mediated mineral scaling in various industries including desalination. However, contrasting results have been reported on the relationship between scaling potential and surface hydrophilicity. In this study, we combine a theoretical analysis with experimental investigation to clarify the effect of surface wetting property on heterogeneous gypsum (CaSO4·2H2O) formation on surfaces immersed in aqueous solutions. Theoretical prediction derived from classical nucleation theory (CNT) indicates that an increase of surface hydrophobicity reduces scaling potential, which contrasts our experimental results that more hydrophilic surfaces are less prone to gypsum scaling. We further consider the possibility of nonclassical pathway of gypsum nucleation, which proceeds by the aggregation of precursor clusters of CaSO4. Accordingly, we investigate the affinity of CaSO4 to substrate surfaces of varied wetting properties via calculating the total free energy of interaction, with the results perfectly predicting experimental observations of surface scaling propensity. This indicates that the interactions between precursor clusters of CaSO4 and substrate surfaces might play an important role in regulating heterogeneous gypsum formation. Our findings provide evidence that CNT might not be applicable to describing gypsum scaling in aqueous solutions. The fundamental insights we reveal on gypsum scaling mechanisms have the potential to guide rational design of scaling-resistant engineered surfaces.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado80523, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, District of Columbia20052, United States
| | - Kuichang Zuo
- The Key Laboratory of Water and Sediment Science, Ministry of Education; College of Environment Science and Engineering, Peking University, Beijing100871, China
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, District of Columbia20052, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee37212, United States
| | - Yiqun Yao
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado80523, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado80523, United States
| |
Collapse
|
19
|
Chang J, Chang H, Meng Y, Zhao H, Lu M, Liang Y, Yan Z, Liang H. Effects of surfactant types on membrane wetting and membrane hydrophobicity recovery in direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Plasma-assisted facile fabrication of omniphobic graphene oxide membrane with anti-wetting property for membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
John J, Nambikattu J, Kaleekkal NJ. An integrated Nanofiltration-Membrane Distillation (NF-MD) process for the treatment of emulsified wastewater. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2131578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Juliana John
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| | - Jenny Nambikattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| |
Collapse
|
22
|
Xie S, Pang Z, Hou C, Wong NH, Sunarso J, Peng Y. One-step preparation of omniphobic membrane with concurrent anti-scaling and anti-wetting properties for membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Tan G, Xu D, Zhu Z, Zhang X, Li J. Tailoring pore size and interface of superhydrophobic nanofibrous membrane for robust scaling resistance and flux enhancement in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Effective Antiscaling Performance of ACTF/Nylon 6, 12 Nanofiltration Composite Membrane: Adsorption, Membrane Performance, and Antifouling Property. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Quan J, Yu J, Wang Y, Hu Z. Oriented shish-kebab like ultra-high molecular weight polyethylene membrane for direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Xu D, Zhu Z, Tan G, Xue X, Li J. Mechanism insight into gypsum scaling of differently wettable membrane surfaces with antiscalants in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Abd Aziz MH, Pauzan MAB, Mohd Hisam NAS, Othman MHD, Adam MR, Iwamoto Y, Hafiz Puteh M, Rahman MA, Jaafar J, Fauzi Ismail A, Agustiono Kurniawan T, Abu Bakar S. Superhydrophobic ball clay based ceramic hollow fibre membrane via universal spray coating method for membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Liao X, Dai P, Wang Y, Zhang X, Liao Y, You X, Razaqpur AG. Engineering anti-scaling superhydrophobic membranes for photothermal membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Li H, Feng H, Li M, Zhang X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Enhanced anti-wetting and anti-fouling properties of composite PFPE/PVDF membrane in vacuum membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Liu Y, Horseman T, Wang Z, Arafat HA, Yin H, Lin S, He T. Negative Pressure Membrane Distillation for Excellent Gypsum Scaling Resistance and Flux Enhancement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1405-1412. [PMID: 34941244 DOI: 10.1021/acs.est.1c07144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) has potential to become a competitive technology for managing hypersaline brine but not until the critical challenge of mineral scaling is addressed. The state-of-the-art approach for mitigating mineral scaling in MD involves the use of superhydrophobic membranes that are difficult to fabricate and are commercially unavailable. This study explores a novel operational strategy, namely, negative pressure direct contact membrane distillation (NP-DCMD) that can minimize mineral scaling with commercially available hydrophobic membranes and at the same time enhance the water vapor flux substantially. By applying a negative gauge pressure on the feed stream, NP-DCMD achieved prolonged resistance to CaSO4 scaling and a dramatic vapor flux enhancement up to 62%. The exceptional scaling resistance is attributable to the formation of a concave liquid-gas under a negative pressure that changes the position of the water-air interface to hinder interfacial nucleation and crystal growth. The substantial flux enhancement is caused by the reduced molecular diffusion resistance within the pores and the enhanced heat transfer kinetics across the boundary layer in NP-DCMD. Achieving substantial performance improvement in both the scaling resistance and vapor flux with commercial membranes, NP-DCMD is a significant innovation with vast potential for practical adoption due to its simplicity and effectiveness.
Collapse
Affiliation(s)
- Yongjie Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Thomas Horseman
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Zhangxin Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hassan A Arafat
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - Shihong Lin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
33
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Li M, Zhao R, Yang T, Ma S. Fabrication of anti-scaling HDPE/fluorinated acrylate polymer/nano-silica composite for landfill leachate piping system. CHEMOSPHERE 2021; 284:131302. [PMID: 34198063 DOI: 10.1016/j.chemosphere.2021.131302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Clogging generally happens to the leachate piping system, which poses a risk to the environment. A low surface energy nanocomposite is prepared to mitigate the cloggings, by adding the fluorinated acrylate polymer and hydrophobically modified nano-silica into high-density polyethylene (HDPE) substrate. The best addition of the fluorinated acrylate polymer and the nano-silica is given as 15% and 5%, to produce the composite with a low surface energy of 29.4 mJ/m2. Through the characterization of contact angle (CA), electrochemical corrosion, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), atomic force microscope (AFM) and thermogravimetry (TG), the composite shows low wettability, good corrosion resistance and thermal stability. The surface hydrophobic property of the composite remains unchanged after being immersed in an acidic (pH = 2) and an alkaline (pH = 12) solution, indicating that the prepared composite has strong adaptability to the extreme environments. In addition, the composite shows better anti-scaling performance than that of the commercial high-density polyethylene (HDPE) and polyvinyl chloride (PVC) pipe materials by application of a dispensing leachate immersion test. The results provide insights into engineering practice for the design and manufacture of pipe materials for leachate collection and transport.
Collapse
Affiliation(s)
- Min Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Rui Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Sude Ma
- School of Materials Science and Engineering, Xihua University, Chengdu, 610039, China
| |
Collapse
|
35
|
Liquid-like surface modification for effective anti-scaling membrane distillation with uncompromised flux. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
37
|
Zhang P, Liu W, Rajabzadeh S, Jia Y, Shen Q, Fang C, Kato N, Matsuyama H. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Xue X, Tan G, Zhu Z. All-Polymer and Self-Roughened Superhydrophobic PVDF Fibrous Membranes for Stably Concentrating Seawater by Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45977-45986. [PMID: 34523328 DOI: 10.1021/acsami.1c12775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Novel specially wettable membranes have been attracting significant attention for durable membrane distillation (MD). However, constructing a superhydrophobic interface often has to undergo complex modification procedures including roughness construction and hydrophobic modification. Herein, all-polymer and self-roughened superhydrophobic poly(vinylidene fluoride) fibrous membranes (PVDF FMs) with robustly stable pores were successfully constructed via electrospinning of fluorinated polyhedral oligomeric silsesquioxanes/PVDF (F-POSS/PVDF) emulsion solution in combination with hot-pressing. The comparative experiment reveals that proper hot-pressing, including adequate temperature and pressure, can help improve membrane pore stability by welding the intersecting fibers and increase the membrane surface hydrophobicity by transferring the inner fluorine chains to the outer fiber surface, simultaneously advancing membrane scaling and fouling resistance. Nevertheless, excessive temperature or pressure will destroy the interconnected pores and surface wettability of the PVDF FM. Significantly, the hot-pressing-treated F-POSS/PVDF FM shows a high water recovery (∼90%) and robust stability after five rounds of the concentration process toward concentrating natural seawater as a target. Thus, the all-polymer and self-roughened superhydrophobic PVDF FMs constructed via electrospinning combined with the thermal treatment have potential applications in concentrating hypersaline brines, which make up for the other membrane technology, including reverse osmosis and nanofiltration technologies that failed to concentrate hypersaline solutions.
Collapse
Affiliation(s)
- Xiangyang Xue
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guangming Tan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
39
|
Tan HF, Tan WL, Ooi B, Leo C. Superhydrophobic PVDF/micro fibrillated cellulose membrane for membrane distillation crystallization of struvite. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Chen Y, Lu KJ, Gai W, Chung TS. Nanofiltration-Inspired Janus Membranes with Simultaneous Wetting and Fouling Resistance for Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7654-7664. [PMID: 34014649 DOI: 10.1021/acs.est.1c01269] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membranes with robust antiwetting and antifouling properties are highly desirable for membrane distillation (MD) of wastewater. Herein, we have proposed and demonstrated a highly effective method to mitigate wetting and fouling by designing nanofiltration (NF)-inspired Janus membranes for MD applications. The NF-inspired Janus membrane (referred to as PVDF-P-CQD) consists of a hydrophobic polyvinylidene fluoride (PVDF) membrane and a thin polydopamine/polyethylenimine (PDA/PEI) layer grafted by sodium-functionalized carbon quantum dots (Na+-CQDs) to improve its hydrophilicity. The vapor flux data have confirmed that the hydrophilic layer does not add extra resistance to water vapor transport. The PVDF-P-CQD membrane exhibits excellent resistance toward both surfactant-induced wetting and oil-induced fouling in direct contact MD (DCMD) experiments. The impressive performance arises from the fact that the nanoscale pore sizes of the PDA/PEI layer would reject surfactant molecules by size exclusion and lower the propensity of surfactant-induced wetting, while the high surface hydrophilicity resulted from Na+-CQDs would induce a robust hydration layer to prevent oil from attachment. Therefore, this study may provide useful insights and strategies to design novel membranes for next-generation MD desalination with minimal wetting and fouling propensity.
Collapse
Affiliation(s)
- Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Kang-Jia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Wenxiao Gai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tai-Shung Chung
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
41
|
Advances in seawater membrane distillation (SWMD) towards stand-alone zero liquid discharge (ZLD) desalination. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Seawater membrane distillation (SWMD) is a promising separation technology due to its ability to operate as a stand-alone desalination unit operation. This paper reviews approaches to improve laboratory-to-pilot-scale MD performance, which comprise operational strategies, module design, and specifically tailored membranes. A detailed comparison of SWMD and sea water reverse osmosis is presented to further analyze the critical shortcomings of SWMD. The unique features of SWMD, namely the ability to operate with extremely high salt rejection and at extreme feed concentration, highlight the SWMD potential to be operated under zero liquid discharge (ZLD) conditions, which results in the production of high-purity water and simultaneous salt recovery, as well as the elimination of the brine disposal cost. However, technical challenges, such as thermal energy requirements, inefficient heat transfer and integration, low water recovery factors, and lack of studies on real-case valuable-salt recovery, are impeding the commercialization of ZLD SWMD. This review highlights the possibility of applying selected strategies to push forward ZLD SWMD commercialization. Suggestions are projected to include intermittent removal of valuable salts, in-depth study on the robustness of novel membranes, module and configuration, utilization of a low-cost heat exchanger, and capital cost reduction in a renewable-energy-integrated SWMD plant.
Collapse
|
42
|
Liu L, He H, Wang Y, Tong T, Li X, Zhang Y, He T. Mitigation of gypsum and silica scaling in membrane distillation by pulse flow operation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Janus membranes for membrane distillation: Recent advances and challenges. Adv Colloid Interface Sci 2021; 289:102362. [PMID: 33607551 DOI: 10.1016/j.cis.2021.102362] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Membrane distillation (MD) is a promising hybrid thermal-membrane separation technology that can efficiently produce freshwater from seawater or contaminated wastewater. However, the relatively low flux and the presence of fouling or wetting agents in feed solution negate the applicability of MD for long term operation. In recent years, 'two-faced' membranes or Janus membranes have shown promising potential to decrease wetting and fouling problem of common MD system as well as enhance the flux performance. In this review, a comprehensive study was performed to investigate the various fabrication, modification, and novel design processes to prepare Janus membranes and discuss their performance in desalination and wastewater treatment utilizing MD. The promising potential, challenges and future prospects relating to the design and use of Janus membranes for MD are also tackled in this review.
Collapse
|
44
|
Zhang W, Hu B, Wang Z, Li B. Fabrication of omniphobic PVDF composite membrane with dual-scale hierarchical structure via chemical bonding for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
46
|
Zhu Z, Zhong L, Horseman T, Liu Z, Zeng G, Li Z, Lin S, Wang W. Superhydrophobic-omniphobic membrane with anti-deformable pores for membrane distillation with excellent wetting resistance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118768] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Yu S, Kang G, Zhu Z, Zhou M, Yu H, Cao Y. Nafion-PTFE hollow fiber composite membranes for improvement of anti-fouling and anti-wetting properties in vacuum membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Thomas N, Kumar M, Palmisano G, Al-Rub RKA, Alnuaimi RY, Alhseinat E, Rowshan R, Arafat HA. Antiscaling 3D printed feed spacers via facile nanoparticle coating for membrane distillation. WATER RESEARCH 2021; 189:116649. [PMID: 33238227 DOI: 10.1016/j.watres.2020.116649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/24/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Surface modification of feed spacers rather than membranes may hold more merit as an antiscaling strategy in membrane distillation (MD), as it avoids compromising the functionality of MD membrane. In this work, an antiscaling polyamide 3D printed spacer was developed for MD. The surface of the printed spacer was coated with fluorinated silica (FS) nanoparticles synthesized via a sol-gel process. The sol-gel approach used to synthesize the FS nanoparticles is considered a convenient and easy approach for engineering the spacer's surface structure and roughness. The performance of the FS coated printed surface was evaluated against other coating materials of different chemical properties. The coated surfaces were characterized using water contact angle measurements, ATR-FTIR, Raman, FESEM-EDX, atomic force and 3D microscopes. The 3D printed surface's microscale roughness and hydrophobicity increased, while its surface-free energy decreased with FS nanoparticles coating. The antiscaling performance of uncoated and FS coated spacers was then assessed in a direct contact MD process, using a scale-inducing aqueous solution of calcium sulfate as its feed. The scalant (Ca2+) attachment on the FS coated spacer was 0.24 mg cm-2, 74% lower than on the uncoated 3D spacer (0.95 mg cm-2). Also, by using the antiscaling FS coated spacer, scaling on the membrane surface dropped by 60%. The predominant factors that helped minimize scaling with FS coating were microscale roughness-induced hydrophobicity and reduced surface-free energy that weakened the scalant 's interaction with the spacer surface.
Collapse
Affiliation(s)
- Navya Thomas
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Mahendra Kumar
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Giovanni Palmisano
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Rashid K Abu Al-Rub
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Reham Y Alnuaimi
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Emad Alhseinat
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Reza Rowshan
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Hassan A Arafat
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
49
|
Fabrication of superhydrophobic PDTS-ZnO-PVDF membrane and its anti-wetting analysis in direct contact membrane distillation (DCMD) applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Effects of different secondary nano-scaled roughness on the properties of omniphobic membranes for brine treatment using membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|