1
|
Tu Y, Chen Y, Zhang X, Xu Y, Zhang Y, Cui T, Fu B. Integrated electrodialysis/electro-oxidation process for the treatment of chlorpyrifos wastewater with high energy efficiency. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:639-653. [PMID: 40087971 DOI: 10.2166/wst.2025.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/03/2025] [Indexed: 03/17/2025]
Abstract
A novel integration of the electrochemical process with electrodialysis and electro-oxidation (IEDEO) was designed for the effective pretreatment of chlorpyrifos manufacturing wastewater, with high concentrations of both salts and organic compounds. The effects of operating parameters including initial pH and constant voltage on the IEDEO process performance were investigated. The IEDEO process showed excellent performance for the simultaneous removal of bio-refractory organics and inorganics in the chlorpyrifos wastewater. In contrast with the single EO process, the results of energy consumption, UV-vis spectra, and GC-MS showed that the oxidation performance for chlorpyrifos wastewater by IEDEO was carried out more efficiently. The biodegradability of the chlorpyrifos wastewater pretreated by IEDEO was significantly improved. The total salt removal (90.3 ± 2.1%) from the chlorpyrifos wastewater obtained by IEDEO was significantly higher than the 5.8 ± 1.6% removal attained with the EO process. The COD removal of chlorpyrifos wastewater by the IEDEO process was 25.5 ± 1.2%, and the energy consumption of the IEDEO process was 15.1 ± 1.6 kWh kg-1 COD at 2 h, representing a 60-65% reduction compared to the EO process. This indicated that the IEDEO process was a valuable pretreatment technique for biological treatment. Moreover, scanning electron microscopy and X-ray diffraction results demonstrated that the IEDEO concentrate was beneficial for subsequent evaporative desalination.
Collapse
Affiliation(s)
- Yong Tu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Jiangsu Environmental Engineering Technology Co. Ltd, Jiangsu Environmental Protection Group Co., Ltd, Nanjing 210019, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Yong Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Jiangsu Environmental Engineering Technology Co. Ltd, Jiangsu Environmental Protection Group Co., Ltd, Nanjing 210019, China E-mail:
| | - Xiaoyue Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Jiangsu Environmental Engineering Technology Co. Ltd, Jiangsu Environmental Protection Group Co., Ltd, Nanjing 210019, China
| | - Yunhao Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Yixuan Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Jiangsu Environmental Engineering Technology Co. Ltd, Jiangsu Environmental Protection Group Co., Ltd, Nanjing 210019, China
| | - Tao Cui
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Jiangsu Environmental Engineering Technology Co. Ltd, Jiangsu Environmental Protection Group Co., Ltd, Nanjing 210019, China
| | - Boming Fu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Jiangsu Environmental Engineering Technology Co. Ltd, Jiangsu Environmental Protection Group Co., Ltd, Nanjing 210019, China
| |
Collapse
|
2
|
Pismenskaya N, Rybalkina O, Solonchenko K, Butylskii D, Nikonenko V. Phosphates Transfer in Pristine and Modified CJMA-2 Membrane during Electrodialysis Processing of Na xH (3-x)PO 4 Solutions with pH from 4.5 to 9.9. MEMBRANES 2023; 13:647. [PMID: 37505013 PMCID: PMC10386648 DOI: 10.3390/membranes13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Phosphate recovery from different second streams using electrodialysis (ED) is a promising step to a nutrients circular economy. However, the relatively low ED performance hinders the widespread adoption of this environmentally sound method. The formation of "bonded species" between phosphates and the weakly basic fixed groups (primary and secondary amines) of the anion exchange membrane can be the cause of decrease in current efficiency and increase in energy consumption. ED processing of NaxH(3-x)PO4 alkaline solutions and the use of intense current modes promote the formation of a bipolar junction from negatively charged bound species and positively charged fixed groups. This phenomenon causes a change in the shape of current-voltage curves, increase in resistance, and an enhancement in proton generation during long-term operation of anion-exchange membrane with weakly basic fixed groups. Shielding of primary and secondary amines with a modifier containing quaternary ammonium bases significantly improves ED performance in the recovery of phosphates from NaxH(3-x)PO4 solution with pH 4.5. Indeed, in the limiting and underlimiting current modes, 40% of phosphates are recovered 1.3 times faster, and energy consumption is reduced by 1.9 times in the case of the modified membrane compared to the pristine one. Studies were performed using a new commercial anion exchange membrane CJMA-2.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Olesya Rybalkina
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Dmitrii Butylskii
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
3
|
Ahmad M, Ahmed M. Characterization and applications of ion-exchange membranes and selective ion transport through them: a review. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
4
|
Barros KS, Giacobbo A, Agnol GD, Velizarov S, Pérez–Herranz V, Bernardes AM. Evaluation of mass transfer behaviour of sulfamethoxazole species at ion–exchange membranes by chronopotentiometry for electrodialytic processes. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Rybalkina O, Solonchenko K, Chuprynina D, Pismenskaya N, Nikonenko V. Effect of Pulsed Electric Field on the Electrodialysis Performance of Phosphate-Containing Solutions. MEMBRANES 2022; 12:1107. [PMID: 36363662 PMCID: PMC9693851 DOI: 10.3390/membranes12111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
A comparative analysis of mass transfer characteristics and energy consumption was carried out for the electrodialysis recovery of PV from of NaH2PO4 solutions and multicomponent (0.045 M NaxH(3-x)PO4, 0.02 M KCl, 0.045 M KOH, 0.028 M CaCl2, and 0.012 M MgCl2, pH 6.0 ± 0.1) solution in conventional continuous current (CC) and pulsed electric field (PEF) modes. The advantages of using PEF in comparison with CC mode are shown to increase the current efficiency and reduce energy consumption, as well as reduce scaling on heterogeneous anion-exchange membranes. It has been shown that PEF contributes to the suppression of the "acid dissociation" phenomenon, which is specific for anion-exchange membranes in phosphate-containing solutions. Pulse and pause lapse 0.1 s-0.1 s and duty cycle 1/2 were found to be optimal among the studied PEF parameters.
Collapse
Affiliation(s)
- Olesya Rybalkina
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Daria Chuprynina
- Analytical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Natalia Pismenskaya
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
6
|
Recovery of Nutrients from Residual Streams Using Ion-Exchange Membranes: Current State, Bottlenecks, Fundamentals and Innovations. MEMBRANES 2022; 12:membranes12050497. [PMID: 35629823 PMCID: PMC9145069 DOI: 10.3390/membranes12050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
The review describes the place of membrane methods in solving the problem of the recovery and re-use of biogenic elements (nutrients), primarily trivalent nitrogen NIII and pentavalent phosphorus PV, to provide the sustainable development of mankind. Methods for the recovery of NH4+ − NH3 and phosphates from natural sources and waste products of humans and animals, as well as industrial streams, are classified. Particular attention is paid to the possibilities of using membrane processes for the transition to a circular economy in the field of nutrients. The possibilities of different methods, already developed or under development, are evaluated, primarily those that use ion-exchange membranes. Electromembrane methods take a special place including capacitive deionization and electrodialysis applied for recovery, separation, concentration, and reagent-free pH shift of solutions. This review is distinguished by the fact that it summarizes not only the successes, but also the “bottlenecks” of ion-exchange membrane-based processes. Modern views on the mechanisms of NH4+ − NH3 and phosphate transport in ion-exchange membranes in the presence and in the absence of an electric field are discussed. The innovations to enhance the performance of electromembrane separation processes for phosphate and ammonium recovery are considered.
Collapse
|
7
|
Two mechanisms of H+/OH− ion generation in anion-exchange membrane systems with polybasic acid salt solutions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Rybalkina OA, Moroz IA, Gorobchenko AD, Pismenskaya ND, Nikonenko VV. Development of Electroconvection at the Undulate Surface of an Anion-Exchange Membrane in Sodium Chloride and Sodium Hydrogen Tartrate Solutions. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
A critical analysis on ion transport of organic acid mixture through an anion-exchange membrane during electrodialysis. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Pismenskaya N, Rybalkina O, Moroz I, Mareev S, Nikonenko V. Influence of Electroconvection on Chronopotentiograms of an Anion-Exchange Membrane in Solutions of Weak Polybasic Acid Salts. Int J Mol Sci 2021; 22:ijms222413518. [PMID: 34948329 PMCID: PMC8708104 DOI: 10.3390/ijms222413518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Visualization of electroconvective (EC) vortices at the undulated surface of an AMX anion-exchange membrane (Astom, Osaka, Japan) was carried out in parallel with the measurement of chronopotentiograms. Weak polybasic acid salts, including 0.02 M solutions of tartaric (NaHT), phosphoric (NaH2PO4), and citric (NaH2Cit) acids salts, and NaCl were investigated. It was shown that, for a given current density normalized to the theoretical limiting current calculated by the Leveque equation (i/ilimtheor), EC vortex zone thickness, dEC, decreases in the order NaCl > NaHT > NaH2PO4 > NaH2Cit. This order is inverse to the increase in the intensity of proton generation in the membrane systems under study. The higher the intensity of proton generation, the lower the electroconvection. This is due to the fact that protons released into the depleted solution reduce the space charge density, which is the driver of EC. In all studied systems, a region in chronopotentiograms between the rapid growth of the potential drop and the attainment of its stationary values corresponds to the appearance of EC vortex clusters. The amplitude of the potential drop oscillations in the chronopotentiograms is proportional to the size of the observed vortex clusters.
Collapse
|
11
|
Pismenskaya N, Bdiri M, Sarapulova V, Kozmai A, Fouilloux J, Baklouti L, Larchet C, Renard E, Dammak L. A Review on Ion-Exchange Membranes Fouling during Electrodialysis Process in Food Industry, Part 2: Influence on Transport Properties and Electrochemical Characteristics, Cleaning and Its Consequences. MEMBRANES 2021; 11:membranes11110811. [PMID: 34832040 PMCID: PMC8623251 DOI: 10.3390/membranes11110811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Ion-exchange membranes (IEMs) are increasingly used in dialysis and electrodialysis processes for the extraction, fractionation and concentration of valuable components, as well as reagent-free control of liquid media pH in the food industry. Fouling of IEMs is specific compared to that observed in the case of reverse or direct osmosis, ultrafiltration, microfiltration, and other membrane processes. This specificity is determined by the high concentration of fixed groups in IEMs, as well as by the phenomena inherent only in electromembrane processes, i.e., induced by an electric field. This review analyzes modern scientific publications on the effect of foulants (mainly typical for the dairy, wine and fruit juice industries) on the structural, transport, mass transfer, and electrochemical characteristics of cation-exchange and anion-exchange membranes. The relationship between the nature of the foulant and the structure, physicochemical, transport properties and behavior of ion-exchange membranes in an electric field is analyzed using experimental data (ion exchange capacity, water content, conductivity, diffusion permeability, limiting current density, water splitting, electroconvection, etc.) and modern mathematical models. The implications of traditional chemical cleaning are taken into account in this analysis and modern non-destructive membrane cleaning methods are discussed. Finally, challenges for the near future were identified.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia; (N.P.); (V.S.); (A.K.)
| | - Myriam Bdiri
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia; (N.P.); (V.S.); (A.K.)
| | - Anton Kozmai
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia; (N.P.); (V.S.); (A.K.)
| | - Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
- Correspondence: ; Tel.: +33-145171786
| |
Collapse
|
12
|
Bipolar membrane electrodialysis for clean production of
L
‐10‐camphorsulfonic
acid: From laboratory to industrialization. AIChE J 2021. [DOI: 10.1002/aic.17490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Rotta EH, Marder L, Pérez-Herranz V, Bernardes AM. Characterization of an anion-exchange membrane subjected to phosphate and sulfate separation by electrodialysis at overlimiting current density condition. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Effects of inorganic ions on the transfer of weak organic acids and their salts in electrodialysis process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Martí-Calatayud MC, Sancho-Cirer Poczatek M, Pérez-Herranz V. Trade-Off between Operating Time and Energy Consumption in Pulsed Electric Field Electrodialysis: A Comprehensive Simulation Study. MEMBRANES 2021; 11:43. [PMID: 33430109 PMCID: PMC7827754 DOI: 10.3390/membranes11010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application of pulsed electric field (PEF) electrodialysis has been demonstrated to be an effective option to modulate concentration polarization and reduce energy consumption in ED systems, but the savings in energy are usually attained by extending the operating time. In the present work, we conduct a comprehensive simulation study about the effects of PEF signal parameters on the time and energy consumption associated with ED processes. Ion transport of NaCl solutions through homogeneous cation-exchange membranes is simulated using a 1-D model solved by a finite-difference method. Increasing the pulse frequency up to a threshold value is effective in reducing the specific energy consumption, with threshold frequencies increasing with the applied current density. Varying the duty cycle causes opposed effects in the time and energy usage needed for a given ED operation. More interestingly, a new mode of PEF functions with the application of low values of current during the relaxation phases has been investigated. This novel PEF strategy has been demonstrated to simultaneously improve the time and the specific energy consumption of ED processes.
Collapse
Affiliation(s)
- Manuel César Martí-Calatayud
- IEC Group, ISIRYM, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain; (M.S.-C.P.); (V.P.-H.)
| | | | | |
Collapse
|
16
|
Barros KS, Martí-Calatayud MC, Ortega EM, Pérez-Herranz V, Espinosa DCR. Chronopotentiometric study on the simultaneous transport of EDTA ionic species and hydroxyl ions through an anion-exchange membrane for electrodialysis applications. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Mathematical Modeling of the Effect of Water Splitting on Ion Transfer in the Depleted Diffusion Layer Near an Ion-Exchange Membrane. MEMBRANES 2020; 10:membranes10020022. [PMID: 32023962 PMCID: PMC7073578 DOI: 10.3390/membranes10020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 11/22/2022]
Abstract
Water splitting (WS) and electroconvection (EC) are the main phenomena affecting ion transfer through ion-exchange membranes in intensive current regimes of electrodialysis. While EC enhances ion transport, WS, in most cases, is an undesirable effect reducing current efficiency and causing precipitation of sparingly soluble compounds. A mathematical description of the transfer of salt ions and H+ (OH−) ions generated in WS is presented. The model is based on the Nernst–Planck and Poisson equations; it takes into account deviation from local electroneutrality in the depleted diffusion boundary layer (DBL). The current transported by water ions is given as a parameter. Numerical and semi-analytical solutions are developed. The analytical solution is found by dividing the depleted DBL into three zones: the electroneutral region, the extended space charge region (SCR), and the quasi-equilibrium zone near the membrane surface. There is an excellent agreement between two solutions when calculating the concentration of all four ions, electric field, and potential drop across the depleted DBL. The treatment of experimental partial current–voltage curves shows that under the same current density, the surface space charge density at the anion-exchange membrane is lower than that at the cation-exchange membrane. This explains the negative effect of WS, which partially suppresses EC and reduces salt ion transfer. The restrictions of the analytical solution, namely, the local chemical equilibrium assumption, are discussed.
Collapse
|