1
|
Li K, Lu Y, Zhou C, Liu Z, Luo L, Zhou A, Shao S. Toward one-step As(III) removal in ultrafiltration with in situ BioMnO x cake layer: Mechanism and feasibility insights. WATER RESEARCH 2025; 273:123087. [PMID: 39793463 DOI: 10.1016/j.watres.2025.123087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Inorganic arsenic (As) is one of the most significant chemical contaminants in drinking water worldwide. Although membrane-based technologies are commonly used for As removal, they often encounter challenges including complex operation, high energy consumption, and the need for chemical addition. To address these challenges, we proposed a one-step ultrafiltration (UF) process empowered by in situ biogenic manganese oxides (BioMnOx) cake layers without any additional chemicals, to treat source water contaminated with both As and manganese (Mn). During the filtration, BioMnOx continuously generated on the membrane surface with the oxidation of Mn2+ by Mn-oxidizing bacteria. The in situ generated BioMnOx cake layer exhibited a heterogeneous structure, high specific surface area, and significant catalytic activity. Notably, with this BioMnOx cake layer, the one-step UF successfully achieved a nearly 100% removal of As(III). This high efficiency is due to the catalytic oxidation of As(III) to As(V) by BioMnOx, followed by the adsorption of As(V) onto the BioMnOx surface. With the removal of Mn2+, new BioMnOx was continuously formed, which provided new catalytic and adsorption sites, thereby enabling a self-sustained removal of As(III). In addition to the advantages of simple operation and chemical free, the process also exhibited a good economic feasibility with a low energy consumption (0.078 kWh/m3) and a low operating cost (0.229 CNY/m3). Our study provides an example to show that cake layers on membranes are not inherently detrimental and can be beneficial in specific applications.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yao Lu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Chu Zhou
- School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China
| | - Liang Luo
- School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
2
|
Xiong K, Long L, Xing J, Luo L, Zhou C, Wang X, Shao S. Biofilm-Induced Critical Flux in Dead-End Ultrafiltration Processes: Phenomenon, Mechanism, and Economic and Environmental Benefits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5337-5347. [PMID: 40029176 DOI: 10.1021/acs.est.4c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The concept of critical flux, introduced by R.W. Field, defines the flux below which the filtration resistance remains constant over time. Notably, this concept, originally for cross-flow filtration, faces challenges in dead-end filtration (the dominant mode used in drinking water ultrafiltration (UF)). Herein, leveraged by regulated membrane biofilms, we proposed a novel biofilm-induced critical flux specific to dead-end filtration. Below this critical flux, the membrane biofilm could act like a cross-flow to maintain mass balances by the biodegradation of foulants, thereby preventing a continuous increase in filtration resistance. Additionally, we demonstrated an optimized strategy to improve the critical flux─backwashing without air scouring, which doubled the critical flux from 6 to 12 L·m-2·h-1. A life cycle analysis revealed that operating at the biofilm-induced critical flux can reduce energy consumption and minimize membrane cleaning, thereby effectively lowering the overall operating costs (52%) and carbon emissions (61%) compared to conventional UF. Sensitivity analysis also indicated that extending membrane life and reducing membrane costs were crucial for lowering overall operating costs, while minimizing fossil energy usage was decisive for reducing carbon emissions. Overall, our study demonstrates that operating at a biofilm-induced critical flux offers a low-maintenance, cost-effective, and environmentally sustainable strategy for drinking water UF.
Collapse
Affiliation(s)
- Keying Xiong
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Juntao Xing
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Liang Luo
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Chu Zhou
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Xu Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
3
|
Song W, Ma R, Liang Z, Li J, Dong J, Du X, Wang Z, Li X. Biofilm growth characteristic and footprint identification in gravity-driven ceramic membrane bioreactor with electro-coagulation under extreme conditions for roofing rainwater purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121944. [PMID: 39067337 DOI: 10.1016/j.jenvman.2024.121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The identification of biofilm growth footprints influencing on the biofilm detachment and breakup can advance research into how biofilms form. Thus, a gravity-driven ceramic membrane bioreactor (GDCMBR) was used to investigate the growth, detachment and breakup of biofilm using rainwater pretreated by electrocoagulation under 70-days continuous operation. The in-situ ultrasonic time-domain reflectometry (UTDR) technique was applied to non-invasively determine the biofilm thickness. Initially, the biofilm was slowly thickening, but it would collapse and became thinner after accumulating to a certain level, and then it thickened again in a later period, following a cyclic pattern of 'thickening - collapsing - thickening'. This is because the biofilm growth is related with the accumulation of flocs, however, excessive floc formation results in the biofilm being overweight till reaching the thickness limit and thus collapsing. Subsequently, the biofilm gradually thickens again due to the floc production and continuous deposition. Although the biofilm was dynamically changing, the water quality of treatment of the biofilm always remained stable. Ammonia nitrogen and total phosphorus have been almost completely removed, while CODMn removal efficiency was around 25%. And total bacteria amount in the membrane concentrate was obviously higher than that in the influent with the greater microbial activity, demonstrating the remarkable enrichment effect on bacteria. The understanding of biofilm growth characteristic and footprint identification enables us to develop rational approaches to control biofilm structure for efficient GDCMBR performance and operation lifespan.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Rong Ma
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhenhao Liang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jiawan Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jiahao Dong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xianhui Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China.
| |
Collapse
|
4
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Hu J, Ji B, Wang R, Shi D, Shao S. Fouling by inorganic-particle-containing cake layers can be reduced by microorganisms at low fluxes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Shao S, Zeng F, Long L, Zhu X, Peng LE, Wang F, Yang Z, Tang CY. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12811-12827. [PMID: 36048162 DOI: 10.1021/acs.est.2c04736] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) membranes have been widely applied in many important environmental applications, including water softening, surface/groundwater purification, wastewater treatment, and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring a crumpled polyamide layer has received considerable attention because of their great potential for achieving dramatic improvements in membrane separation performance. Since the report of novel crumpled Turing structures that exhibited an order of magnitude enhancement in water permeance ( Science 2018, 360 (6388), 518-521), the number of published research papers on this emerging topic has grown exponentially to approximately 200. In this critical review, we provide a systematic framework to classify the crumpled NF morphologies. The fundamental mechanisms and fabrication methods involved in the formation of these crumpled morphologies are summarized. We then discuss the transport of water and solutes in crumpled NF membranes and how these transport phenomena could simultaneously improve membrane water permeance, selectivity, and antifouling performance. The environmental applications of these emerging NF membranes are highlighted, and future research opportunities/needs are identified. The fundamental insights in this review provide critical guidance on the further development of high-performance NF membranes tailored for a wide range of environmental applications.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Fanxi Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Fei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
7
|
Li K, Xu W, Han M, Cheng Y, Wen G, Huang T. Integration of iron-manganese co-oxide (FMO) with gravity-driven membrane (GDM) for efficient treatment of surface water containing manganese and ammonium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Liu W, Yang K, Qu F, Liu B. A moderate activated sulfite pre-oxidation on ultrafiltration treatment of algae-laden water: Fouling mitigation, organic rejection, cell integrity and cake layer property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Shao S, Shi D, Hu J, Qing W, Li X, Li X, Ji B, Yang Z, Guo H, Tang CY. Unraveling the Kinetics and Mechanism of Surfactant-Induced Wetting in Membrane Distillation: An In Situ Observation with Optical Coherence Tomography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:556-563. [PMID: 34928146 DOI: 10.1021/acs.est.1c05090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we performed a direct contact membrane distillation and successfully demonstrated the non-invasive imaging of surfactant-induced wetting using optical coherence tomography. This method enabled us to investigate the wetting kinetics, which was found to follow a "three-region" relationship between the wetting rate and surfactant concentration: the (i) nonwetted region, (ii) concentration-dependent region, and (iii) concentration-independent region at low, intermediate, and high surfactant concentrations, respectively. This wetting behavior was explained by the "autophilic effect", i.e., the wetting was caused by the transfer of surfactants from the water-vapor interface to the unwetted membrane and rendered this membrane hydrophilic, and then the wetting frontier moved forward under capillary forces. At region-(i), the surfactant concentration in the water-vapor interface (Clv) was too low to make the unwetted membrane sufficiently hydrophilic; thereby, the membrane could not be wetted. At region-(ii), due to the fast adsorption of the surfactant on the newly wetted membrane, the wetting rate was determined by the advection/diffusion of surfactants from the feed stream. Consequently, the wetting rate increased with the increases in the water flux and surfactant concentration. At region-(iii), the advection/diffusion provided excess surfactants for adsorption, and thus Clv reached its upper limit (maximum surface excess) and the wetting rate leveled off.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Jiangshuai Hu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xue Li
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
10
|
Wang S, Ji B, Zhang M, Gu J, Ma Y, Liu Y. Tetracycline-induced decoupling of symbiosis in microalgal-bacterial granular sludge. ENVIRONMENTAL RESEARCH 2021; 197:111095. [PMID: 33811864 DOI: 10.1016/j.envres.2021.111095] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Tetracycline has been frequently detected in municipal wastewater due to its extended use for various purposes. This study investigated the influence of tetracycline on non-aerated microalgal-bacterial granular sludge cultivated for municipal wastewater treatment. It was found that ammonia-N removal rate decreased at the tetracycline concentrations of 1 and 10 mg/L. A mass balance on nitrogen further revealed that the observed ammonia-N removal could be mainly attributed to microalgal assimilation which was inhibited by tetracycline at the concentrations studied. In fact, reduced production of chlorophyll in microalgae was observed in the presence of tetracycline, leading to decreased ammonia-N removal rate. Meanwhile, decreased dissolved oxygen (DO) concentration at high tetracycline concentration also indicated inhibition of microalgae. Furthermore, the relative abundances of microalgae containing green algae and cyanobacteria were inhibited by tetracycline. The results gathered in this study indicated the tetracycline-induced decoupling of symbiosis in microalgal-bacterial granular sludge. It is expected that this study can shed lights on the behaviors of non-aerated microalgal-bacterial granules in response to the presence of tetracycline during municipal wastewater treatment.
Collapse
Affiliation(s)
- Shulian Wang
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China
| | - Bin Ji
- Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
11
|
Tang X, Pronk W, Traber J, Liang H, Li G, Morgenroth E. Integrating granular activated carbon (GAC) to gravity-driven membrane (GDM) to improve its flux stabilization: Respective roles of adsorption and biodegradation by GAC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144758. [PMID: 33454492 DOI: 10.1016/j.scitotenv.2020.144758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
As a low-maintenance and cost-effective process, gravity-driven membrane (GDM) filtration is a promising alternative for decentralized drinking water supply, while the low flux impedes its extensive application. In order to address such issue, an integrated process consisting of granular activated carbon (GAC) layer and GDM was developed. The performance of virgin (fresh GAC) or preloaded GAC (saturated GAC) was compared. Flux stabilization was observed both in the fresh and saturated GAC/GDM process during long-term filtration and their stable fluxes were both improved by approximately 50% relative to the GDM control. Moreover, integrating GAC with GDM contributed to efficient removals for dissolved organic compounds (DOC), assimilable organic carbon (AOC) and low molecular weight substances both in fresh and saturated GAC/GDM filtration. Compared to GDM control, coupling GAC to GDM could significantly reduce the concentrations of extracellular polymeric substances (EPS) and total cell counts (TCC) within the biofouling layer, and engineer highly heterogeneous structures of biofouling layer on the membrane surface. In the fresh GAC/GDM process, the improved flux obtained was mainly related to less coverage of biofouling layer and lower EPS concentrations due to efficient removals of membrane foulants by GAC adsorption. The achieved higher stable flux can be maintained during long-term filtration (after GAC saturation) owing to the combined effects of EPS reduction and formation of highly heterogeneous structures of biofouling layer in the saturated GAC/GDM system. Overall, the integrated GAC/GDM process can hopefully facilitate improvements both in the stabilized flux and permeate quality, with practical relevance for GDM applications in decentralized drinking water supply.
Collapse
Affiliation(s)
- Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Wouter Pronk
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Livinguard AG, Bahnhofstrasse 12, 6300 Zug, Switzerland
| | - Jacqueline Traber
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
| |
Collapse
|
12
|
Yi X, Li J, Wang D, Wang Y, Wang S, Yang F. The underlying mechanism in gel formation and its mathematical simulation during anionic polyacrylamide solution ultrafiltration process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27124-27134. [PMID: 32394260 DOI: 10.1007/s11356-020-09084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
A dead-end ultrafiltration cup was continuously operated to investigate the underlying mechanisms of membrane fouling caused by gel layer in this paper. Anionic polyacrylamide was used as a model foulant for gel formation process in various ultrafiltration processes by two kinds of ultrafiltration membrane, e.g., polyvinylidene fluoride (PVDF) membrane (OM) and TiO2/Al2O3-PVDF membrane (MM); then, a gel formation model was established and systematically assessed. The results show that the gel formation process in ultrafiltration can be divided into three stages: "slow-rapid-slow" flux decay curve. The R2 value of the simulation curve was still higher than 0.90 for both OM and MM. Based on the current cognition, the proposed gel layer formation mechanism and mathematical model were feasible.
Collapse
Affiliation(s)
- Xuesong Yi
- School of Environmental Science and Engineering, Hainan University, Haikou, 570028, China
| | - Jiahui Li
- School of Environmental Science and Engineering, Hainan University, Haikou, 570028, China
| | - Dexin Wang
- School of Environmental Science and Engineering, Hainan University, Haikou, 570028, China
| | - Yong Wang
- Key Laboratory of Marine` Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, People's Republic of China.
| | - Shuo Wang
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, T2N 1 N4, Canada
| | - Fei Yang
- School of Environmental Science and Engineering, Hainan University, Haikou, 570028, China
| |
Collapse
|
13
|
Shi D, Liu Y, Fu W, Li J, Fang Z, Shao S. A combination of membrane relaxation and shear stress significantly improve the flux of gravity-driven membrane system. WATER RESEARCH 2020; 175:115694. [PMID: 32182538 DOI: 10.1016/j.watres.2020.115694] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Gravity-driven membrane (GDM) filtration system is a promising process for decentralized drinking water treatment. During the operation, membrane relaxation and shear stress could be simply achieved by intermittent filtration and water disturbance (created by occasionally shaking membrane model or stirring water in membrane tank), respectively. To better understand the impact of membrane relaxation and shear stress on the biofouling layer and stable flux in GDM system, action of daily 60-min intermission, daily flushing (cross-flow velocity = 10 cm s-1, 1 min), and the combination of the two (flushed right after the 60-min intermission) were compared. The results showed that membrane relaxation and shear stress lonely was ineffective in improving the stable flux, while their combination enhanced the stable flux by 70%. A more open and spatially heterogeneous biofouling layer with a low extracellular polymeric substance (EPS) content and a high microbial activity was formed under the combination of membrane relaxation and shear stress. In-situ optical coherence tomography (OCT) observation revealed that, during intermission, the absence of pushing force by water flow induced a reversible expansion of biofouling layer, and the biofouling layer restored to its initial state soon after resuming filtration. Shear stress caused abrasion and erosion on the biofouling surface, but it exerted little effect on the interior of biofouling layer. Under the combination, however, both the surface and interior of biofouling layer were disturbed because of 1) the water vortexes caused by rough biofouling layer surface, and 2) the porous structure after 60-min intermission. This disturbance, in turn, helped the biofouling layer maintain its roughness and porosity, thereby improving the stable flux of GDM system.
Collapse
Affiliation(s)
- Danting Shi
- School of Civil Engineering, Wuhan University, PR China.
| | - Yang Liu
- School of Civil Engineering, Wuhan University, PR China
| | - Wenwen Fu
- School of Civil Engineering, Wuhan University, PR China
| | - Jiangyun Li
- School of Civil Engineering, Wuhan University, PR China
| | - Zheng Fang
- School of Civil Engineering, Wuhan University, PR China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, PR China.
| |
Collapse
|