1
|
Lopes LM, Germiniani LGL, Rocha Neto JBM, Andrade PF, da Silveira GAT, Taketa TB, Gonçalves MDC, Beppu MM. Preparation and characterization of porous membranes of glucomannan and silver decorated cellulose nanocrystals for application as biomaterial. Int J Biol Macromol 2023; 250:126236. [PMID: 37562469 DOI: 10.1016/j.ijbiomac.2023.126236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Bacterial infection usually represents a threat in medical wound care, due to the increase in treatment complexity and the risk of antibiotic resistance. For presenting interesting characteristics for the use as biomaterial, natural polymers have been explored for this application. Among them, a promising candidate is the konjac glucomannan (KGM) with outstanding biocompatibility and biodegradability but lack of antibacterial activity. In this study, KGM was combined with silver decorated cellulose nanocrystals (CNC-Ag) to prepare membranes by using a recent reported casting-freezing method. The results highlight the potential anti-adhesive activity of the new materials against Staphylococcus aureus upon contact, without the burst release of silver nanoparticles. Furthermore, the incorporation of CNC enhanced the thermal stability of these membranes while preserving the favorable mechanical properties of the KGM-based material. These findings highlight a straightforward approach to enhance the antibacterial properties of natural polymers, which can be effectively useful in medical devices like wound dressings that typically lack such properties.
Collapse
Affiliation(s)
- Laise Maia Lopes
- University of Campinas, School of Chemical Engineering, Campinas, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Dong W, Li L, Cheng S, Huang L, Yang L, Liu Y, Yao H, Liu C, Liu W, Ji X. Fabrication of a Cation Exchange Membrane with Largely Reduced Anion Permeability for Advanced Aqueous K-ion Battery in an Alkaline-Neutral Electrolyte Decoupling System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205970. [PMID: 36453593 DOI: 10.1002/smll.202205970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Herein, an efficient method to prepare sulfonated polyether ether ketone (SPEEK) based cation exchange membranes (CEMs) is developed, where polyethersulfone (PES) is used as an additive. The optimized membrane of 30 wt.%PES/SPEEK-M exhibits a rather low anion permeability and a high ionic conductivity of 9.52 mS cm-1 together with low volume swelling in water. Meanwhile, tensile strength of the membrane is as high as 31.4 MPa with a tensile strain of 162%. As separators for aqueous K-ion batteries (AKIBs) with decoupled gel electrolytes (Zn anode in alkaline and Prussian blue (FeHCF) cathode in neutral). Discharge voltage of the AKIB can reach 2.3 V. Meanwhile, Zn dendrites can be effectively suppressed in the gel anolyte. Specific capacities of the FeHCF cathode are 116.7 mAh g-1 at 0.3 A g-1 (close to its theoretical value), and 95.0 mAh g-1 at 1.0 A g-1 , indicating good rate performance. Capacity retention of the cathode is as high as 91.2% after 1000 cycles' cycling owing to the well remained neutral environment of the catholyte. There is almost no pH change for the catholyte after cycling, indicating good anion-blocking or cation-selecting ability of the 30 wt.%PES/SPEEK-M, much better than other membranes.
Collapse
Affiliation(s)
- Wenju Dong
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Luping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shuang Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Longjun Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Lexuan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yuxiu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Huan Yao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chenxu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xu Ji
- College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| |
Collapse
|
3
|
Hu L, Gao L, Di M, Zheng W, Ruan X, Dai Y, Chen W, He G, Yan X. Pyridine-extended proton sponge enabling high-performance membrane for flow batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Abstract
Stationary energy storage methods such as flow batteries are one of the best options to integrate with smart power grids. Though electrochemical energy storage using flow battery technologies has been successfully demonstrated since the 1970s, the introduction of ionic liquids into the field of energy storage introduces new dimensions in this field. This reliable energy storage technology can provide significantly more flexibility when incorporated with the synergic effects of ionic liquids. This mini-review enumerates the present trends in redox flow battery designs and the use of ionic liquids as electrolytes, membranes, redox couples, etc. explored in these designs. This review specifically intends to provide an overview of the research prospects of ionic liquids for redox flow batteries (RFB).
Collapse
|
5
|
Wang Z, Zhang S, Liu Q, Chen Y, Weng Z, Jian X. Preparation and characterization of the side-chain quaternized poly(phthalazinone ether ketone)s with phenyl groups for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Düerkop D, Widdecke H, Kunz U, Schilde C, Schmiemann A. Low‐Cost Membranen für die Vanadium‐Redox‐Flow‐Batterie. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dennis Düerkop
- Ostfalia Hochschule für angewandte Wissenschaften Institut für Recycling Robert-Koch-Platz 8a 38440 Wolfsburg Deutschland
| | - Hartmut Widdecke
- Ostfalia Hochschule für angewandte Wissenschaften Institut für Recycling Robert-Koch-Platz 8a 38440 Wolfsburg Deutschland
| | - Ulrich Kunz
- TU Clausthal Institut für Chemische und Elektrochemische Verfahrenstechnik Leibnizstraße 17 38678 Clausthal-Zellerfeld Deutschland
| | - Carsten Schilde
- TU Braunschweig Institut für Partikeltechnik Volkmaroder Straße 5 38104 Braunschweig Deutschland
| | - Achim Schmiemann
- Ostfalia Hochschule für angewandte Wissenschaften Institut für Recycling Robert-Koch-Platz 8a 38440 Wolfsburg Deutschland
| |
Collapse
|
7
|
|
8
|
Guo D, Zhou X, Zhang Z, Wang F, Jiang F. Robust Ion‐Selective Membrane for Redox Flow Batteries Based on Ultralow Sulfonation Degree Poly(Ether Sulfone). MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dingyu Guo
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xinjie Zhou
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zhuhan Zhang
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Feiran Wang
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Fengjing Jiang
- Institute of Fuel Cell School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
9
|
Düerkop D, Widdecke H, Schilde C, Kunz U, Schmiemann A. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review. MEMBRANES 2021; 11:214. [PMID: 33803681 PMCID: PMC8003036 DOI: 10.3390/membranes11030214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995-2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.
Collapse
Affiliation(s)
- Dennis Düerkop
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Hartmut Widdecke
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Carsten Schilde
- Institute of Particle Technology, Braunschweig University of Technology, Volkmaroder Straße 5, 38100 Braunschweig, Germany;
| | - Ulrich Kunz
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany;
| | - Achim Schmiemann
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| |
Collapse
|
10
|
Zhang D, Xu Z, Zhang X, Zhao L, Zhao Y, Wang S, Liu W, Che X, Yang J, Liu J, Yan C. Oriented Proton-Conductive Nanochannels Boosting a Highly Conductive Proton-Exchange Membrane for a Vanadium Redox Flow Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4051-4061. [PMID: 33434002 DOI: 10.1021/acsami.0c20847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we propose a sulfonated poly (ether ether ketone) (SPEEK) composite proton-conductive membrane based on a 3-(1-hydro-imidazolium-3-yl)-propane-1-sulfonate (Him-pS) additive to break through the trade-off between conductivity and selectivity of a vanadium redox flow battery (VRFB). Specifically, Him-pS enables an oriented distribution of the SPEEK matrix to construct highly conductive proton nanochannels throughout the membrane arising from the noncovalent interaction. Moreover, the "acid-base pair" effect from an imidazolium group and a sulfonic group further facilitates the proton transport through the nanochannels. Meanwhile, the structure of the acid-base pair is further confirmed based on density functional theory calculations. Material and electrochemical characterizations indicate that the nanochannels with a size of 16.5 nm are vertically distributed across the membrane, which not only accelerate proton conductivity (31.54 mS cm-1) but also enhance the vanadium-ion selectivity (39.9 × 103 S min cm-3). Benefiting from such oriented proton-conductive nanochannels in the membrane, the cell delivers an excellent Coulombic efficiency (CE, ≈ 98.8%) and energy efficiency (EE, ≈ 78.5%) at 300 mA cm-2. More significantly, the cell maintains a stable energy efficiency over 600 charge-discharge cycles with only a 5.18% decay. Accordingly, this work provides a promising fabrication strategy for a high-performance membrane of VRFB.
Collapse
Affiliation(s)
- Denghua Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zeyu Xu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Xihao Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Lina Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yingying Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shaoliang Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Weihua Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuefu Che
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jingshuai Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianguo Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chuanwei Yan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
11
|
Wang F, Jiang F. Construction of Three-dimensional Ion-conducting Channels of Poly(vinylidene fluoride) Membranes and Their Performance in Vanadium Redox Flow Battery. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Li K, Jiang Y, Zhang R, Ren S, Feng X, Xue J, Zhang T, Zhang Z, He Z, Dai L, Wang L. Oxygen vacancy and size controlling endow tin dioxide with remarked electrocatalytic performances towards vanadium redox reactions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Che X, Zhao H, Ren X, Zhang D, Wei H, Liu J, Zhang X, Yang J. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118359] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Affiliation(s)
- Chao Tang
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
| | - Merlin L. Bruening
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana USA
| |
Collapse
|