1
|
Arundhathi B, Pabba M, Raj SS, Sahu N, Sridhar S. Advancements in Mixed-Matrix Membranes for Various Separation Applications: State of the Art and Future Prospects. MEMBRANES 2024; 14:224. [PMID: 39590610 PMCID: PMC11596774 DOI: 10.3390/membranes14110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 11/28/2024]
Abstract
Integrating nanomaterials into membranes has revolutionized selective transport processes, offering enhanced properties and functionalities. Mixed-matrix membranes (MMMs) are nanocomposite membranes (NCMs) that incorporate inorganic nanoparticles (NPs) into organic polymeric matrices, augmenting mechanical strength, thermal stability, separation performance, and antifouling characteristics. Various synthesis methods, like phase inversion, layer-by-layer assembly, electrospinning, and surface modification, enable the production of tailored MMMs. A trade-off exists between selectivity and flux in pristine polymer membranes or plain inorganic ceramic/zeolite membranes. In contrast, in MMMs, NPs exert a profound influence on membrane performance, enhancing both permeability and selectivity simultaneously, besides exhibiting profound antibacterial efficacy. Membranes reported in this work find application in diverse separation processes, notably in niche membrane-based applications, by addressing challenges such as membrane fouling and degradation, low flux, and selectivity, besides poor rejection properties. This review comprehensively surveys recent advances in nanoparticle-integrated polymeric membranes across various fields of water purification, heavy metal removal, dye degradation, gaseous separation, pervaporation (PV), fuel cells (FC), and desalination. Efforts have been made to underscore the role of nanomaterials in advancing environmental remediation efforts and addressing drinking water quality concerns through interesting case studies reported in the literature.
Collapse
Affiliation(s)
- Bhoga Arundhathi
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Manideep Pabba
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
| | - Shrisha S. Raj
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
| | - Nivedita Sahu
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Sundergopal Sridhar
- Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India; (B.A.); (M.P.); (S.S.R.); (N.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
2
|
Farahbakhsh J, Najafi M, Golgoli M, Haeri SZ, Khiadani M, Razmjou A, Zargar M. Dual modification of reverse osmosis membranes with NH 2-MIL-125 and functionalised multiwalled carbon nanotubes for enhanced nanoplastic removal. CHEMOSPHERE 2024; 361:142401. [PMID: 38795918 DOI: 10.1016/j.chemosphere.2024.142401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The present study describes a novel double-modified strategy for developing high-performance thin-film composite reverse osmosis (TFC-RO) membranes by incorporating titanium-based metal organic frameworks (NH2-MIL-125) and functionalised multiwalled carbon nanotubes (MWCNTs) into the support layer and selective layer, respectively. Initially, the support layer was subjected to successive modifications using NH2-MIL-125 mixed with polysulfone (PSF) in dimethylformamide DMF solution to investigate their impact on the performance and properties of the support layer and resultant TFC-RO membranes. Results indicated that the new structure of the modified support layer had significant influences on the developed TFC-RO membranes. Notably, the pristine PSF support exhibited a large surface pore size, medium porosity, and strong hydrophobicity, resulting in a low-flux TFC-RO membrane. However, after modification with NH2-MIL-125, the optimal blend support demonstrated a small surface pore size, high porosity, and improved hydrophilicity, favouring the formation of a high performance TFC-RO membrane. The incorporation of functionalised MWCNTs nanochannels into the selective layer, using the optimal NH2-MIL-125-PSF blended support, resulted in a smoother and more hydrophilic TFC-RO membrane with enhanced negative charge to improve antifouling properties against negative foulants (i.e., nanoplastics (NPs) and bovine serum albumin (BSA)). The double-modified membrane (TFC-RO-DM) exhibited superior performance over the conventional PSF-TFC-RO membrane. Notably, the maximum water flux reached 39 L m-2.h-1 with 98.4% NaCl rejection. The membrane exhibited a high flux recovery rate of 92% following a 30-min physical cleaning process. Additionally, the TFC-RO-DM membrane displayed reduced fouling against NPs suggesting the great promise of this innovative double-modification approach for the advancement of high-performance TFC-RO membranes.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Seyedeh Zahra Haeri
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia.
| |
Collapse
|
3
|
Zhang K, Lin R, Yan M, Wu Y. Click-chemistry synergic MXene-functionalized flexible skeleton membranes for accurate recognition and separation. J Colloid Interface Sci 2023; 652:2005-2016. [PMID: 37690308 DOI: 10.1016/j.jcis.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Membrane-based technology with accurate-recognition and specific-transmission has been regarded as one of the most promising strategies in environmental protection and energy conservation. However, membrane technique still faces challenges of "trade-off effect" between high selectivity and permeation flux within organic-aqueous mixed matrix. Here, well-intergrown click-chemistry synergic MXene-functionalized flexible skeleton membranes has been prepared in this strategy, enabling size-exclusion&structure selectivity by uniform location array imprinting unit and transport performance towards specific medicinal molecules of artemisinin (Ars). The well-assembled ultrathin cascade-type MXene layer guarantees the narrow interlayer nanochannels and the flexible skeleton modified mesoporous SiO2 nanoparticles provide active reaction platform for the construction of selective recognition space. The resulting membranes demonstrated outstanding selective separation performance with permeability factor that artesunate (Aru) /Ars and dihydro-artemisinin (d-Ars) / Ars of 3.17 and 2.89 and permeation flux of 1173.25 L·m-2·h-1·bar-1. Besides, combined with antibacterial durability, recycling performance, high separation performance in mobile phase stability of CMFMs, it is anticipated that this work hopefully opens a new avenue for efficient chiral separation to medicinal molecules, exhibiting broad potential for practical application.
Collapse
Affiliation(s)
- Kaicheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongxin Lin
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ming Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Gholami F, Zinatizadeh AA, Zinadini S, Rittmann BE, Torres CI. Enhanced antifouling and flux performances of a composite membrane via incorporating
TiO
2
functionalized with hydrophilic groups of L‐cysteine for nanofiltration. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Foad Gholami
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
| | - Ali Akbar Zinatizadeh
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
- Environmental Research Center (ERC) Razi University Kermanshah Iran
| | - Sirus Zinadini
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
- Environmental Research Center (ERC) Razi University Kermanshah Iran
| | - Bruce E. Rittmann
- Biodesign Swette Center for Environmental Biotechnology Arizona State University Tempe Arizona USA
- School of Sustainable Engineering and the Built Environment Arizona State University Tempe Arizona USA
| | - Cesar I. Torres
- Biodesign Swette Center for Environmental Biotechnology Arizona State University Tempe Arizona USA
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| |
Collapse
|
5
|
Hoang AT, Nižetić S, Cheng CK, Luque R, Thomas S, Banh TL, Pham VV, Nguyen XP. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. CHEMOSPHERE 2022; 287:131959. [PMID: 34454224 DOI: 10.1016/j.chemosphere.2021.131959] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of heavy metal ions found in waterways near industrial zones are often exceed the prescribed limits, posing a continued danger to the environment and public health. Therefore, greater attention has been devoted into finding the efficient solutions for adsorbing heavy metal ions. This review paper focuses on the synthesis of carbon nanotubes (CNTs) from biomass and their application in the removal of heavy metals from aqueous solutions. Techniques to produce CNTs, benefits of modification with various functional groups to enhance sorption uptake, effects of operating parameters, and adsorption mechanisms are reviewed. Adsorption occurs via physical adsorption, electrostatic interaction, surface complexation, and interaction between functional groups and heavy metal ions. Moreover, factors such as pH level, CNTs dosage, duration, temperature, ionic strength, and surface property of adsorbents have been identified as the common factors influencing the adsorption of heavy metals. The oxygenated functional groups initially present on the surface of the modified CNTs are responsible towards the adsorption enhancement of commonly-encountered heavy metals such as Pb2+, Cu2+, Cd2+, Co2+, Zn2+, Ni2+, Hg2+, and Cr6+. Despite the recent advances in the application of CNTs in environmental clean-up and pollution treatment have been demonstrated, major obstacles of CNTs such as high synthesis cost, the agglomeration in the post-treated solutions and the secondary pollution from chemicals in the surface modification, should be critically addressed in the future studies for successful large-scale applications of CNTs.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, Ctra. Nnal. IV-A, Km. 396, E-14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia.
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Tien Long Banh
- Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Van Viet Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Guo Z, Zhang K, Guan H, Liu M, Yu S, Gao C. Improved separation efficiency of polyamide-based composite nanofiltration membrane by surface modification using 3-aminopropyltriethoxysilane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Chen S, Wang X, Zhu G, Lu Z, Zhang Y, Zhao X, Hou B. Developing multi-wall carbon nanotubes/Fusion-bonded epoxy powder nanocomposite coatings with superior anti-corrosion and mechanical properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Hoseinpour V, Noori L, Mahmoodpour S, Shariatinia Z. A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:906-965. [PMID: 33380262 DOI: 10.1080/09205063.2020.1870379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable methods have so far been used for the surface modification of biomedical membranes. Several reviews and articles have been published on the improvements achieved in the field of poly(arylsulfone) membranes subjected to various surface modification methods and used in biomedical applications. This review concentrates on the surface modification, biological applications and future perspective of the poly(arylsulfone) biomedical membranes. Different surface modification procedures employed for the poly(arylsulfone) membranes have been classified, studied and compared. Diverse surface modification techniques include surface coating, chemical modification and immobilization/cross-linking, grafting, surface zwitterionicalization, mussel-inspired coating and layer-by-layer assembly. Furthermore, we review the recent research studies performed on the surface modification of the poly(arylsulfone) biomedical membranes. Meanwhile, the properties of biomedical membranes are also discussed in each section. At last, the future perspective and challenges of the strategies utilized for the surface modification of poly(arylsulfone) biomedical membranes are presented.
Collapse
Affiliation(s)
- Vahid Hoseinpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Laya Noori
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Saba Mahmoodpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
9
|
Zakria HS, Othman MHD, Kamaludin R, Sheikh Abdul Kadir SH, Kurniawan TA, Jilani A. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC Adv 2021; 11:6985-7014. [PMID: 35685270 PMCID: PMC9131363 DOI: 10.1039/d0ra10964a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
This article reviews the various techniques of immobilizing a photocatalyst into and onto the polymer membrane for pollutant removal and as a problem solver in handling suspended photocatalyst issues from the previous literature. A particular focus is given to the preparation of mixed matrix membranes and deposition techniques for photocatalytic degradation in applications for wastewater treatment. Advantages and disadvantages in this application are evaluated. Various operating conditions during the process are presented. About 90 recently published studies (2008–2020) are reviewed. From the literature, it was found that TiO2 is the most favoured photocatalyst that is frequently used in photocatalytic water treatment. Dry–wet co-spinning and sputtering techniques emerged as the promising technique for immobilizing a uniformly distributed photocatalyst within the polymeric membrane, and exhibited excellence pollutant removal. In general, the technical applicability is the key factor in selecting the best photocatalyst immobilizing technique for water treatment. Finally, the scope of various techniques that have been reviewed may provide potential for future photocatalytic study. This article reviews the various techniques of immobilizing a photocatalyst into and onto the polymer membrane for pollutant removal and as a problem solver in handling suspended photocatalyst issues from the previous literature.![]()
Collapse
Affiliation(s)
- Hazirah Syahirah Zakria
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Roziana Kamaludin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensics (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Asim Jilani
- Center of Nanotechnology, King Abdul-Aziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Elnabawy E, Elsherbiny IMA, Abdelsamad AMA, Anis B, Hassan A, Ulbricht M, Khalil ASG. Tailored CNTs Buckypaper Membranes for the Removal of Humic Acid and Separation of Oil-in-Water Emulsions. MEMBRANES 2020; 10:membranes10050097. [PMID: 32408564 PMCID: PMC7281685 DOI: 10.3390/membranes10050097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022]
Abstract
Carbon nanotubes (CNTs) are a robust material and proven as a promising candidate for a wide range of electronic, optoelectronic and environmental applications. In this work, two different methods were utilized for the preparation of CNTs exhibiting different aspect ratios via chemical vapor deposition (CVD). The as-prepared CNTs were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2adsorption isotherms, thermogravimetric analysis and Raman spectroscopy in order to investigate their morphological and structural properties. Free-standing CNTs "buckypaper" membranes were fabricated, characterized and tailored to meet the requirements of two applications, i.e., (1) the removal of humic acid (HA) from water and (2) separation of oil-in-water emulsions. It was revealed that the hydrophobic buckypapers showed high separation performance for Shell oil-in-water emulsions filtration, with up to 98% through the accumulation of oil droplets onto the membrane surface. The absorption capacity of buckypaper membranes for various organic liquids (oil, chloroform and toluene) was evaluated over 10 absorption cycles to investigate their recyclability and robustness. Moreover, surface modification was introduced to the pristine CNTs to increase their surface hydrophilicity and improve the pure water permeability of buckypapers. These modified buckypapers showed high flux for HA solutions and excellent HA rejection efficiency up to 95%via size exclusion and electrostatic repulsion mechanisms.
Collapse
Affiliation(s)
- Eman Elnabawy
- Physics Department and Center for Environmental and Smart Technology, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (E.E.); (A.H.)
| | - Ibrahim M. A. Elsherbiny
- Lehrstuhlfür Technische Chemie II, and Center for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany; (I.M.A.E.); (A.M.A.A.); (M.U.)
| | - Ahmed M. A. Abdelsamad
- Lehrstuhlfür Technische Chemie II, and Center for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany; (I.M.A.E.); (A.M.A.A.); (M.U.)
- Water Pollution Dept, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Badawi Anis
- Spectroscopy Dept, Physics Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abdelwahab Hassan
- Physics Department and Center for Environmental and Smart Technology, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (E.E.); (A.H.)
| | - Mathias Ulbricht
- Lehrstuhlfür Technische Chemie II, and Center for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany; (I.M.A.E.); (A.M.A.A.); (M.U.)
| | - Ahmed S. G. Khalil
- Physics Department and Center for Environmental and Smart Technology, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (E.E.); (A.H.)
- Materials Science & Engineering Department, School of Innovative Design Engineering, Egypt-Japan University of Science and Technology (E-JUST), 179 New Borg El-Arab City, Alexandria 21934, Egypt
- Correspondence:
| |
Collapse
|