1
|
Ali S, Feng X. Interfacially Cross-Linked Polydopamine/Polybenzimidazole Composite Membranes for Organic Solvent Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65517-65528. [PMID: 39535191 DOI: 10.1021/acsami.4c14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Interfacial cross-linking was used to prepare composite organic solvent nanofiltration (OSN) membranes comprising a polydopamine (PDA) active layer formed on a polybenzimidazole (PBI) substrate. Dibromo-p-xylene (DBX) was employed as a cross-linking agent to make the composite membranes chemically stable against harsh polar aprotic solvents. The interfacial cross-linking of PDA/PBI allowed for finely tuning the molecular weight cutoff (MWCO) of the membrane, resulting in a membrane with precise molecular separation capabilities for OSN. The morphology and surface properties of the membranes were characterized, and a membrane with a MWCO of 286 Da was investigated for OSN of a series of solvents. The membrane permeance was in the order of acetonitrile (MeCN) > methanol (MeOH) > acetone > toluene > dimethylformamide (DMF) > heptane > ethanol (EtOH) > isopropanol (IPA) > tetrahydrofuran (THF). The membranes displayed a sharp pore size distribution, yielding a rejection rate of over 99% for Rose Bengal (RB, MW 1020 g/mol) and Remazol brilliant blue (RBB, MW 626.5 g/mol) from DMF and EtOH solutions. When it came to methyl orange (MO, MW 327.3 g/mol) that had a molecular weight closer to the MWCO of the membrane, the membrane still displayed a high rejection rate of 95% and 99% in nanofiltrating solvents DMF and EtOH, respectively. In addition, it was demonstrated that the membrane was able to effectively fractionate mixed solutes having molecular weights appropriate for the MWCO rating of the membrane during OSN.
Collapse
Affiliation(s)
- Sharafat Ali
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Xianshe Feng
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Lee TH, Balcik M, Wu WN, Pinnau I, Smith ZP. Dual-phase microporous polymer nanofilms by interfacial polymerization for ultrafast molecular separation. SCIENCE ADVANCES 2024; 10:eadp6666. [PMID: 39141741 PMCID: PMC11323956 DOI: 10.1126/sciadv.adp6666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Fine-tuning microporosity in polymers with a scalable method has great potential for energy-efficient molecular separations. Here, we report a dual-phase molecular engineering approach to prepare microporous polymer nanofilms through interfacial polymerization. By integrating two micropore-generating units such as a water-soluble Tröger's base diamine (TBD) and a contorted spirobifluorene (SBF) motif, the resultant TBD-SBF polyamide shows an unprecedentedly high surface area. An ultrathin TBD-SBF membrane (~20 nm) exhibits up to 220 times improved solvent permeance with a moderate molecular weight cutoff (~640 g mol-1) compared to the control membrane prepared by conventional chemistry, which outperforms currently reported polymeric membranes. We also highlight the great potential of the SBF-based microporous polyamides for hydrocarbon separations by exploring the isomeric effects of aqueous phase monomers to manipulate microporosity.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcel Balcik
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Wan-Ni Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Wojciechowski C, Wasyłeczko M, Lewińska D, Chwojnowski A. A Comprehensive Review of Hollow-Fiber Membrane Fabrication Methods across Biomedical, Biotechnological, and Environmental Domains. Molecules 2024; 29:2637. [PMID: 38893513 PMCID: PMC11174095 DOI: 10.3390/molecules29112637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
This work presents methods of obtaining polymeric hollow-fiber membranes produced via the dry-wet phase inversion method that were published in renowned specialized membrane publications in the years 2010-2020. Obtaining hollow-fiber membranes, unlike flat membranes, requires the use of a special installation for their production, the most important component of which is the hollow fiber forming spinneret. This method is most often used in obtaining membranes made of polysulfone, polyethersulfone, polyurethane, cellulose acetate, and its derivatives. Many factors affect the properties of the membranes obtained. By changing the parameters of the spinning process, we change the thickness of the membranes' walls and the diameter of the hollow fibers, which causes changes in the membranes' structure and, as a consequence, changes in their transport/separation parameters. The type of bore fluid affects the porosity of the inner epidermal layer or causes its atrophy. Porogenic compounds such as polyvinylpyrrolidones and polyethylene glycols and other substances that additionally increase the membrane porosity are often added to the polymer solution. Another example is a blend of two- or multi-component membranes and dual-layer membranes that are obtained using a three-nozzle spinneret. In dual-layer membranes, one layer is the membrane scaffolding, and the other is the separation layer. Also, the temperature during the process, the humidity, and the composition of the solution in the coagulating bath have impact on the parameters of the membranes obtained.
Collapse
Affiliation(s)
- Cezary Wojciechowski
- Nalecz Institute of Biocybernetic and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Str., 02-109 Warsaw, Poland; (M.W.); (D.L.); (A.C.)
| | | | | | | |
Collapse
|
4
|
Bi Y, Meng X, Tan Z, Geng Q, Peng J, Yong Q, Sun X, Guo M, Wang X. A novel ZIF-L/PEI thin film nanocomposite membrane for removing perfluoroalkyl substances (PFASs) from water: Enhanced retention and high flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171727. [PMID: 38492592 DOI: 10.1016/j.scitotenv.2024.171727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Membrane separation technology is widely recognized as an effective method for removing perfluoroalkyl substances (PFASs) in water treatment. ZIF-L, a metal-organic framework (MOF) family characterized by its mat-like cavities and leaf-like morphology, has garnered considerable interest and has been extensively employed in fabricating thin-film nanocomposite (TFN) membranes. In this study, a robust, high-performance TFN membrane to remove PFASs in a nanofiltration (NF) process was created through an interfacial polymerization approach on the surface of polysulfone (PSF), incorporating ZIF-L within the selective layer. The TFN membrane modified by adding 5 wt% ZIF-L (relative to the weight of ethylene imine polymer (PEI)) exhibits 2.3 times higher water flux (up to 47.56 L·m-2·h-1·bar-1) than the pristine thin film composite membrane (20.46 L·m-2·h-1·bar-1), and the rejection for typical PFASs were above 95 % (98.47 % for perfluorooctanesulfonic acid (PFOS) and 95.85 % for perfluorooctanoic acid (PFOA)). The effectiveness of the ZIF-L/PEI TFN membrane in retaining representative PFASs was examined under various conditions, including different pressures, feed concentrations, aqueous environments, and salt ions. Notably, the experiments demonstrated that even after contamination with humic acid (HA), >88 % of the water flux could be restored by washing. Additionally, density functional theory (DFT) calculations were employed to predict the distinct intermolecular interactions between PFASs and ZIF-L as well as PEI. These calculations provide additional insights into the interception mechanism of TFN membranes towards PFASs. Based on this study, TFN membranes incorporating MOF as nanofillers show great potential as an effective method for purifying PFASs from aqueous environments and possess superior environmental sustainability and cost-effectiveness.
Collapse
Affiliation(s)
- Yujie Bi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangmin Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhijun Tan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianqian Geng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiaozhi Yong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaojie Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xinping Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
5
|
Cheng J, Li Z, Bao X, Zhang R, Zhang Z, Hai G, Sun K, Shi W. Retarding the diffusion rate of piperazine through the interface of aqueous/organic phase: Bis-tris propane tuned the trans-state of ultra-low concentration piperazine. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Intermolecular cross-linked polymer of intrinsic microporosity-1 (PIM-1)-based thin-film composite hollow fiber membrane for organic solvent nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Divakar S, Padaki M, Balakrishna RG. Review on Liquid-Liquid Separation by Membrane Filtration. ACS OMEGA 2022; 7:44495-44506. [PMID: 36530224 PMCID: PMC9753544 DOI: 10.1021/acsomega.2c02885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Liquid-liquid separation is crucial in the present circumstances. Substitution of the conventional types of separation like distillation and pervaporation is mandatory due to the high energy requirement of the two. The separation of organic mixtures has a huge potential in industries such as pharmaceutical, fine chemicals, fuels, textile, papers, and fertilizers. Membrane-affiliated separations are one of the prime techniques for liquid-liquid separations. Organic solvent nanofiltration, solvent-resistant nanofiltration, and ultrafiltration are a few methods through which organic liquid-liquid separation can be attained. Implementation of such a technology in chemical industries reduces the time consumption and is cost efficient. Even though a lot of research has been done, attention is needed in the field of organic-liquid separation aided by membranes. In this review, various membranes used for organic mixture separations such as polar-nonpolar, polar-polar, and nonpolar-nonpolar are discussed with a focus on membrane materials, additives, separation theory, separation type, experimental setup, fouling mitigation, surface modification, and major challenges. The review also offers insights and probable solutions for existing problems and also discusses the scope of research to be undertaken in the future.
Collapse
|
8
|
Jonkers WA, Cornelissen ER, de Grooth J, de Vos WM. Hollow fiber nanofiltration: From lab-scale research to full-scale applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Cyclomatrix polyphosphazene organic solvent nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Tang S, Jiao Y, Yan F, Qin Q, Qin S, Ma X, Li J, Cui Z. Construction of hollow fiber nanofiltration separation layer with bridging network structure by polymer-anchored co-deposition for high-concentration heavy metal ion removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Liu L, Liu S, Wang E, Su B. Hollow Fiber Membrane for Organic Solvent Nanofiltration: A Mini Review. MEMBRANES 2022; 12:membranes12100995. [PMID: 36295754 PMCID: PMC9607374 DOI: 10.3390/membranes12100995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/03/2023]
Abstract
Organic solvents take up 80% of the total chemicals used in pharmaceutical and related industries, while their reuse rate is less than 50%. Traditional solvent treatment methods such as distillation and evaporation have many disadvantages such as high cost, environmental unfriendliness, and difficulty in recovering heat-sensitive, high-value molecules. Organic solvent nanofiltration (OSN) has been a prevalent research topic for the separation and purification of organic solvent systems since the beginning of this century with the benefits of no-phase change, high operational flexibility, low cost, as well as environmental friendliness. Especially, hollow fiber (HF) OSN membranes have gained a lot of attention due to their high packing density and easy scale-up as compared with flat-sheet OSN membranes. This paper critically reviewed the recent research progress in the preparation of HF OSN membranes with high performance, including different materials, preparation methods, and modification treatments. This paper also predicts the future direction of HF OSN membrane development.
Collapse
Affiliation(s)
- Liyang Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Shaoxiao Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Enlin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Baowei Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| |
Collapse
|
12
|
Li H, Li X, Ouyang G, Li L, Zhong Z, Cai M, Li W, Huang W. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Fabrication of hollow-fiber nanofiltration membrane with negative-positive dual-charged separation layer to remove low concentration CuSO4. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Ong CS, Oor JZ, Tan SJ, Chew JW. Enantiomeric Separation of Racemic Mixtures Using Chiral-Selective and Organic-Solvent-Resistant Thin-Film Composite Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10875-10885. [PMID: 35175724 DOI: 10.1021/acsami.1c25175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane-based chiral separation has emerged as a promising method for the efficient separation of chiral molecules. Ideally, the membranes should be able to achieve good enantioselectivity, while maintaining high stability in harsh solvents. However, engineering membranes for chiral molecular separation in harsh organic solvent environments is still a big challenge. In this study, we fabricated a novel thin-film composite nanofiltration membrane composed of (2-hydroxypropyl)-beta-cyclodextrin (HP-β-CD) as the chiral selector for the enantiomeric separation of racemic 1-phenylethanol chiral compounds in organic solvents. The fabricated membrane achieved 60-80% enantioselectivity of R-phenylethanol over S-phenylethanol in nonpolar n-hexane. It was found that HP-β-CD played a critical role in the enantioselective performance, as the membrane without HP-β-CD showed no chiral selectivity. Molecular docking calculations substantiate the experiments by showing that the average free binding energy of S-phenylethanol with HP-β-CD is stronger than that of R-phenylethanol, indicating that the complex of S-phenylethanol with HP-β-CD has a higher thermodynamic stability and greater interaction. Furthermore, the crosslinked network between HP-β-CD and the polyamide layer conferred the membrane with solvent stability in nonpolar solvents. Moreover, this new membrane exhibited good solvent permeance and a molecular weight cutoff of around 650 g mol-1.
Collapse
Affiliation(s)
- Chi Siang Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jia Zheng Oor
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Shiliang Johnathan Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
16
|
|
17
|
Goh KS, Chen Y, Ng DYF, Chew JW, Wang R. Organic solvent forward osmosis membranes for pharmaceutical concentration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Nozad E, Poursattar Marjani A, Mahmoudian M. A novel and facile semi-IPN system in fabrication of solvent resistant nano-filtration membranes for effective separation of dye contamination in water and organic solvents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
An ultrapermeable thin film composite membrane supported by “green” nanofibrous polyimide substrate for polar aprotic organic solvent recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Fujimura Y, Kawakatsu T, Nakagawa K, Shintani T, Yoshioka T. Mechanism of silica nanoparticles removal in an isopropyl alcohol/water solution with an anion exchange membrane. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Polybenzimidazole Membrane Crosslinked with Epoxy-Containing Inorganic Networks for Organic Solvent Nanofiltration and Aqueous Nanofiltration under Extreme Basic Conditions. MEMBRANES 2022; 12:membranes12020140. [PMID: 35207063 PMCID: PMC8877178 DOI: 10.3390/membranes12020140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
In this study, a novel polybenzimidazole (PBI)-based organic solvent nanofiltration (OSN) membrane possessing excellent stability under high pH condition was developed. To improve the chemical stability, the pristine PBI membrane was crosslinked with a silane precursor containing an epoxy end group. In detail, hydrolysis and condensation reaction of methoxysilane in the 3-glycidyloxypropyl trimethoxysilane (GPTMS) yields organic–inorganic networks within the PBI membrane structure. At the same time, the epoxy end groups on the organosiloxane network (Si–O–Si) reacted with amine groups of PBI to complete the crosslinking. The resulting crosslinked PBI membrane exhibited a good stability upon exposure to organic solvents and was not decomposed even in basic solution (pH 13). Our membrane showed an ethanol permeance of 27.74 LMHbar−1 together with a high eosin Y rejection of >90% under 10 bar operation pressure at room temperature. Furthermore, our PBI membrane was found to be operational even under an extremely basic condition, although the effective pore size was slightly enlarged due to the pore swelling effect. The results suggest that our membrane is a promising candidate for OSN application under basic conditions.
Collapse
|
22
|
Tang M, Liu M, Li L, Su G, Yan X, Ye C, Sun S, Xing W. Solvation‐amination‐synergy that neutralizes interfacially polymerized membranes for ultrahigh selective nanofiltration. AIChE J 2022. [DOI: 10.1002/aic.17602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming‐Jian Tang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Mei‐Ling Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Lu Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Guo‐Jiang Su
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Xiang‐Yu Yan
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Can Ye
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Shi‐Peng Sun
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Weihong Xing
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
23
|
Song C, Tang S, Yue S, Cui Z, Du X, Jiang T, He B, Li J. Design of microstructure for hollow fiber loose nanofiltration separation layer and its compactness-tailoring mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126800. [PMID: 34396955 DOI: 10.1016/j.jhazmat.2021.126800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
In order to promote the application of membrane technology in the treatment of textile wastewater containing small molecule dye, fabricating a hollow fiber loose nanofiltration (LNF) with a thin and compact separation layer and deepening the understanding of compactness-tailoring mechanism in chemical crosslinking are essential. Firstly, the mechanisms of synergistic crosslinking of PEI-70K and PEI-10K, along with a weakening of the PEI hydration by ethanol, were expounded in primary crosslinking. Then, some LNF separation layers with different compactness were prepared through crosslinking with different crosslinkers to further reduce pore size, which resulted in the efficient removal (~100%) of a small molecular dye (methyl orange (MO), M = 327 g mol-1). The removal of methyl orange is mainly caused by size sieving. The relationship among the pore size, the Mw of the secondary crosslinkers, and the pore size reduction rate was interpreted by comparing the pore size reduction rate of three secondary crosslinkers with different molecular weights. In addition, the as-prepared separation layer exhibited excellent dimensional stability and solvent resistance. This paper not only provides a reference for fabricating hollow fiber LNF with better purification performance, but also shows their potential in developing solvent resistant nanofiltration.
Collapse
Affiliation(s)
- Chenyang Song
- School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Shenyi Tang
- School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Shangzhi Yue
- School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Zhenyu Cui
- School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China.
| | - Xi Du
- School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Tao Jiang
- Beijing Alliance PKU Management Consultants Ltd., Beijing 100101, PR China
| | - Benqiao He
- School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Jianxin Li
- School of Material Science and Engineering/State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
24
|
|
25
|
Xu SJ, Luo LH, Tong YH, Shen Q, Xu ZL, Wu YZ, Yang H. Organic solvent nanofiltration (OSN) membrane with polyamantadinamide active layer for reducing separation performance inconformity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
High separation performance thin film composite and thin film nanocomposite hollow fiber membranes via interfacial polymerization for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Sewerin T, Elshof MG, Matencio S, Boerrigter M, Yu J, de Grooth J. Advances and Applications of Hollow Fiber Nanofiltration Membranes: A Review. MEMBRANES 2021; 11:890. [PMID: 34832119 PMCID: PMC8625000 DOI: 10.3390/membranes11110890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Hollow fiber nanofiltration (NF) membranes have gained increased attention in recent years, partly driven by the availability of alternatives to polyamide-based dense separation layers. Moreover, the global market for NF has been growing steadily in recent years and is expected to grow even faster. Compared to the traditional spiral-wound configuration, the hollow fiber geometry provides advantages such as low fouling tendencies and effective hydraulic cleaning possibilities. The alternatives to polyamide layers are typically chemically more stable and thus allow operation and cleaning at more extreme conditions. Therefore, these new NF membranes are of interest for use in a variety of applications. In this review, we provide an overview of the applications and emerging opportunities for these membranes. Next to municipal wastewater and drinking water processes, we have put special focus on industrial applications where hollow fiber NF membranes are employed under more strenuous conditions or used to recover specific resources or solutes.
Collapse
Affiliation(s)
- Tim Sewerin
- NX Filtration, Josink Esweg 44, 7545 PN Enschede, The Netherlands; (T.S.); (M.G.E.)
| | - Maria G. Elshof
- NX Filtration, Josink Esweg 44, 7545 PN Enschede, The Netherlands; (T.S.); (M.G.E.)
| | - Sonia Matencio
- LEITAT Technological Center, C/Pallars, 179-185, 08005 Barcelona, Spain; (S.M.); (M.B.)
| | - Marcel Boerrigter
- LEITAT Technological Center, C/Pallars, 179-185, 08005 Barcelona, Spain; (S.M.); (M.B.)
| | - Jimmy Yu
- Pepsi Co., Inc., Global R & D, 350 Columbus Ave, Valhalla, NY 10595, USA;
| | - Joris de Grooth
- NX Filtration, Josink Esweg 44, 7545 PN Enschede, The Netherlands; (T.S.); (M.G.E.)
- Membrane Science & Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
29
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Sub10 μm macroporous aramid substrates with a hierarchically structured interface for organic solvent nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Ong CS, Lay HT, Tamilselvam NR, Chew JW. Cross-Linked Polycarbonate Microfiltration Membranes with Improved Solvent Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4025-4032. [PMID: 33759528 DOI: 10.1021/acs.langmuir.1c00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we report a facile preparation of an organic solvent-resistant membrane through the formation of urethane bonds between polycarbonate and polyethyleneimine groups. The modified membrane was further cross-linked with 1,4-butanediol diglycidyl ether (BDG) to enhance its solvent resistance as well as its thermal and mechanical stability. The cross-linked polycarbonate membranes exhibited improved solvent resistance with various organic solvents, giving a maximum swelling degree of 6%. It also showed better mechanical and thermal stability, as well as excellent permeance and rejection performance. This study demonstrates BDG as an attractive cross-linker for polycarbonate microfiltration membranes to transform them toward organic solvent filtration applications.
Collapse
Affiliation(s)
- Chi Siang Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Huang Teik Lay
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Navin Raj Tamilselvam
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, 637141, Singapore
| |
Collapse
|
32
|
Luo X, Wang Z, Wu S, Fang W, Jin J. Metal ion cross-linked nanoporous polymeric membranes with improved organic solvent resistance for molecular separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Goh KS, Chen Y, Chong JY, Bae TH, Wang R. Thin film composite hollow fibre membrane for pharmaceutical concentration and solvent recovery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Graphene oxide interlayered thin-film nanocomposite hollow fiber nanofiltration membranes with enhanced aqueous electrolyte separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117153] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Meng QW, Ge Q. Enhancing Chlorine Resistance and Water Permeability during Forward Osmosis Separation Using Superhydrophilic Materials with Conjugated Systems. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35393-35402. [PMID: 32633936 DOI: 10.1021/acsami.0c05176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Poor resistance to free chlorine severely impairs the service of conventional polyamide (PA) membrane in water treatment. Here we design a series of superhydrophilic aromatic sulfonate materials (ASMs) comprising successively increasing conjugated systems and ionizable groups (ASM-1, ASM-2, ASM-3) to develop a chlorine-resistant membrane via chemical modification. By altering the membrane physicochemical properties and surface structure, ASMs substantially improve the chlorine resistance and water permeability of membrane. With 0.5 M NaCl as the draw solution, all ASMs enhance membrane water fluxes by more than 60% relative to those of the nascent PA membrane in forward osmosis (FO) processes. After exposed to a 1000 ppm sodium hypochlorite solution for 2-8 h, the modified membranes exhibit smaller variations in FO performance than the PA membrane. Having the largest conjugated system and the most sulfonate groups, ASM-3 enables the membrane to sustain a chlorination strength of up to 8000 ppm·h with an insignificant NaCl loss during the FO process, surpassing other recently developed PA membranes in chlorine resistance. These results manifest that the combination of a large conjugated system and ionizable group is key for imbuing membrane with excellent chlorine resistance and water permeability.
Collapse
Affiliation(s)
- Qing-Wei Meng
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Qingchun Ge
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| |
Collapse
|