1
|
Bauer RA, Qiu M, Schillo-Armstrong MC, Snider MT, Yang Z, Zhou Y, Verweij H. Ultra-Stable Inorganic Mesoporous Membranes for Water Purification. MEMBRANES 2024; 14:34. [PMID: 38392661 PMCID: PMC10890243 DOI: 10.3390/membranes14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Thin, supported inorganic mesoporous membranes are used for the removal of salts, small molecules (PFAS, dyes, and polyanions) and particulate species (oil droplets) from aqueous sources with high flux and selectivity. Nanofiltration membranes can reject simple salts with 80-100% selectivity through a space charge mechanism. Rejection by size selectivity can be near 100% since the membranes can have a very narrow size distribution. Mesoporous membranes have received particular interest due to their (potential) stability under operational conditions and during defouling operations. More recently, membranes with extreme stability became interesting with the advent of in situ fouling mitigation by means of ultrasound emitted from within the membrane structure. For this reason, we explored the stability of available and new membranes with accelerated lifetime tests in aqueous solutions at various temperatures and pH values. Of the available ceria, titania, and magnetite membranes, none were actually stable under all test conditions. In earlier work, it was established that mesoporous alumina membranes have very poor stability. A new nanofiltration membrane was made of cubic zirconia membranes that exhibited near-perfect stability. A new ultrafiltration membrane was made of amorphous silica that was fully stable in ultrapure water at 80 °C. This work provides details of membrane synthesis, stability characterization and data and their interpretation.
Collapse
Affiliation(s)
- Ralph A Bauer
- Global Research and Development Inc., 539 Industrial Mile Road, Columbus, OH 43228, USA
| | - Minghui Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | | | - Matthew T Snider
- Carbon-Carbon Advanced Technologies, 4704 Eden Road, Arlington, TX 76001, USA
| | - Zi Yang
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Yi Zhou
- Quantumscape, 1730 Technology Drive, San Jose, CA 95110, USA
| | - Hendrik Verweij
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Jin Z, Qiu M, Wen J, Shen Y, Chen X, Fan Y. Construction of ZrO2-CeO2 composite UF membranes for effective PVA recovery from desizing wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Priya AK, Gnanasekaran L, Kumar PS, Jalil AA, Hoang TKA, Rajendran S, Soto-Moscoso M, Balakrishnan D. Recent trends and advancements in nanoporous membranes for water purification. CHEMOSPHERE 2022; 303:135205. [PMID: 35667502 DOI: 10.1016/j.chemosphere.2022.135205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
When it comes to electrocatalysis, the creation of nanodevices, the research of energy and the environment, and diagnostics, nanoporous materials are an asset. Nanoporous membranes, which can be used to filter water, have recently been the subject of new research and are summarized in this review. These membranes are used to remove salts and metallic ions from the water following an analysis of several nanoporous membrane types and production procedures. Demonstrations and discussions of these membrane systems are then conducted. Nanoporous membranes can be used to filter water, according to the conclusions of this study, which will help readers better grasp how they work. As a result, novel water purification nanoporous compounds that are easy to manufacture, inexpensive, and effective will be developed. Merits and demerits of nanoporous membrane for water treatment and its advancements in purification were discussed.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - A A Jalil
- School of Chemical and Energy Engineering Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | | | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| |
Collapse
|
4
|
Zhao C, Ye Y, Chen X, Da X, Qiu M, Fan Y. Charged modified tight ceramic ultrafiltration membranes for treatment of cationic dye wastewater. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Jin Z, Shen Y, Da X, Chen X, Qiu M, Fan Y. Construction of high-performance CeO2 ultrafiltration membrane for high-temperature dye/salt separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Gu Q, Kotobuki M, Kirk CH, He M, Lim GJH, Ng TCA, Zhang L, Ng HY, Wang J. Overcoming the Trade-off between Water Permeation and Mechanical Strength of Ceramic Membrane Supports by Interfacial Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29199-29211. [PMID: 34126737 DOI: 10.1021/acsami.1c08157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous ceramic membrane supports with high mechanical strength and permeation are required for highly permeable ceramic membranes. The water permeation of a ceramic membrane support is largely dependent on its level of open porosity, which can be however generally detrimental to the mechanical strength. In this work, low-cost kaolin nanoflakes were rationally composited with coarse alumina particles, and multichannel flat-sheet ceramic supports were successfully fabricated by extrusion and subsequent partial sintering. The macroscopic properties, microstructure characteristics, permeability, and mechanical strength of the ceramic membrane supports were systematically established and comprehensively studied. The incorporation of kaolin nanoflakes effectively reduced the sintering temperature to about 1200 °C. An interesting evolution of the pore structure was evidenced with the increase in sintering temperature. Interestingly, the porous ceramic supports prepared at 1400 °C with a nominal pore size of 1.47 μm showed the highest water permeability of 9911.9 ± 357.5 LMHB, and at the same time the flexural strength reached 109.6 ± 4.6 MPa. The much improved permeability was attributed to the unique multilevel pore structures, and the enhanced flexural strength mainly originated from the strongly interfacial bonding, as evidenced by the trans-granular fracture behavior. Also, the ceramic membrane supports exhibited excellent chemical resistance and good removal efficiency for oily wastewater. This work highlights the significant role of interfacial engineering in simultaneously improving the water permeation and mechanical strength, thereby overcoming their trade-off in porous ceramic membrane supports.
Collapse
Affiliation(s)
- Qilin Gu
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Masashi Kotobuki
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Chin Ho Kirk
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Meibo He
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Gwendolyn J H Lim
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Lei Zhang
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - John Wang
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
7
|
Zhao C, Yu X, Da X, Qiu M, Chen X, Fan Y. Fabrication of a charged PDA/PEI/Al2O3 composite nanofiltration membrane for desalination at high temperatures. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|