1
|
Weissenberger M, Vincent A, Champavier Y, Diogo CC, Babonneau F, Pradeilles N, Maître A, Lucas-Roper R. Greener solvents for the processing of preceramic polycarbosilane: application in the preparation of B 4C/SiC composites. RSC Adv 2024; 14:21945-21953. [PMID: 38989246 PMCID: PMC11235054 DOI: 10.1039/d4ra04431b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
The innovation introduced in this study consists of replacing toluene with safer solvents such as cyclopentane or diethyl ether in the processing of a preceramic polycarbosilane (allylhydridopolycarbosilane, AHPCS) and assessing its impact on the functionalisation of B4C powders to produce B4C/SiC composites. Fourier-transform infrared (FT-IR) with ATR and nuclear magnetic resonance (NMR) spectroscopy revealed no major modification in the polymer structure. SEC/MALS analysis showed a slight change in the number-average molar mass of the polymer regardless of the functionalisation solvent used in correlation with a slight decrease in the polymer ceramic yield due to oligomer loss. The thermal behaviour of the preceramic polymer investigated via mass spectrometry remained unaffected by the solvent change. The search for polymer residues after distillation highlighted the recyclability of both the functionalisation solvent and the polymer, despite a slight increase in the molar mass of the polymer. Finally, the sinterability of B4C/AHPCS samples was studied with the preparation of B4C/SiC composites via a polymer-derived ceramic (PDC) route and spark plasma sintering (SPS). The effect of the solvent on the microstructure and relative density of the specimens (>92%) is negligible. The specimens retain a fine and homogeneous phase distribution despite process modification. The results highlight the approach developed to use greener solvents for the chemical synthesis of functionalised ceramics and represent a step towards the generalisation of more environmentally friendly processes.
Collapse
Affiliation(s)
- Marion Weissenberger
- University of Limoges, IRCER UMR 7315 Limoges F-87068 France
- Saint-Gobain Research Provence Cavaillon F-84306 France
| | | | - Yves Champavier
- Univ. Limoges, CNRS, Inserm, CHU Limoges, BISCEm UAR 2015, US 42 Limoges F-87068 France
| | - Cristina Coelho Diogo
- FCMat, Fédération de Chimie et Matériaux de Paris Centre, CNRS, Sorbonne Université FR2482 Paris F-75005 France
| | - Florence Babonneau
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), CNRS, Sorbonne Université UMR 7574, Campus Jussieu, 4 Place Jussieu Paris F-75005 France
| | | | | | | |
Collapse
|
2
|
Binazadeh M, Rasouli J, Sabbaghi S, Mousavi SM, Hashemi SA, Lai CW. An Overview of Photocatalytic Membrane Degradation Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093526. [PMID: 37176408 PMCID: PMC10180107 DOI: 10.3390/ma16093526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental pollution has become a worldwide issue. Rapid industrial and agricultural practices have increased organic contaminants in water supplies. Hence, many strategies have been developed to address this concern. In order to supply clean water for various applications, high-performance treatment technology is required to effectively remove organic and inorganic contaminants. Utilizing photocatalytic membrane reactors (PMRs) has shown promise as a viable alternative process in the water and wastewater industry due to its efficiency, low cost, simplicity, and low environmental impact. PMRs are commonly categorized into two main categories: those with the photocatalyst suspended in solution and those with the photocatalyst immobilized in/on a membrane. Herein, the working and fouling mechanisms in PMRs membranes are investigated; the interplay of fouling and photocatalytic activity and the development of fouling prevention strategies are elucidated; and the significance of photocatalysis in membrane fouling mechanisms such as pore plugging and cake layering is thoroughly explored.
Collapse
Affiliation(s)
- Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Jamal Rasouli
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Samad Sabbaghi
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz 71557-13876, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
3
|
Zhao F, Yao X, Liu C, Ran X, Wang C, Lu B. Mercapto-functionalized ordered mesoporous silica-modified PVDF membrane for efficiently scavenging Cd 2+ from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114103. [PMID: 34798586 DOI: 10.1016/j.jenvman.2021.114103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, (3-mercaptopropyl) triethoxysilane (MPTMS)-modified ordered mesoporous silica (OMS) materials were prepared using a post-grifting method, with MPTMS as the organic functionalized reagent. The OMS materials were analyzed by FT-IR spectra, N2 sorption, and small angle X-ray scattering to evaluate their potential for scavenging Cd2+ from water. Moreover, a (3-mercaptopropyl) triethoxysilane-functionalized ordered mesoporous silica modified polyvinylidene fluoride (MPTMS-OMS/PVDF) membrane was synthesized using the solvent phase inversion method to remediate wastewater containing heavy metal ions. The MPTMS-OMS was characterized by a maximum specific surface area of 422 m2/g, high surface hydrophilicity, and high pure water flux. The MPTMS-OMS/PVDF exhibited a dynamic adsorption capacity for Cd2+ in water. At an MPTMS-OMS content of 5 wt%, the Cd2+ removal efficiency was 90%, whereas the pure PVDF showed no Cd2+ adsorption capacity. These results highlight the potential of the MPTMS-OMS/PVDF membrane to eliminate Cd2+ during the decontamination of aqueous streams containing low-concentrations of contaminants.
Collapse
Affiliation(s)
- Fengbin Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinyun Yao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 20037, China
| | - Chang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xianqiang Ran
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chengxian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Tai ZS, Othman MHD, Mustafa A, Ravi J, Wong KC, Koo KN, Hubadillah SK, Azali MA, Alias NH, Ng BC, Mohamed Dzahir MIH, Ismail AF, Rahman MA, Jaafar J. Development of hydrophobic polymethylhydrosiloxane/tetraethylorthosilicate (PMHS/TEOS) hybrid coating on ceramic membrane for desalination via membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Kubo M, Okibayashi K, Kojima M, Mano R, Daiko Y, Honda S, Bernard S, Iwamoto Y. Superhydrophobic polycarbosilane membranes for purification of solar hydrogen. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Tada S, Saito S, Mori A, Mizuno H, Ando S, Asaka T, Daiko Y, Honda S, Bernard S, Iwamoto Y. Reversible Redox Property of Co(III) in Amorphous Co-doped SiO 2/γ-Al 2O 3 Layered Composites. MATERIALS 2020; 13:ma13235345. [PMID: 33255789 PMCID: PMC7728299 DOI: 10.3390/ma13235345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
This paper reports on a unique reversible reducing and oxidizing (redox) property of Co(III) in Co-doped amorphous SiO2/γ-Al2O3 composites. The Fenton reaction during the H2O2-catalyzed sol–gel synthesis utilized in this study lead to the partial formation of Co(III) in addition to Co(II) within the composites. High-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analyses for the composite powder sample with a composition of Al:Si:Co = 85:10:5 showed the amorphous state of the Co-doped SiO2 that modified γ-Al2O3 nanocrystalline surfaces. In situ X-ray absorption fine structure (XAFS) spectroscopic analysis suggested reversible redox reactions of Co species in the composite powder sample during heat-treatment under H2 at 500 °C followed by subsequent cooling to RT under Ar. Further analyses by in situ IR spectroscopy combined with cyclic temperature programmed reduction/desorption (TPR/TPD) measurements and X-ray photoelectron spectroscopic (XPS) analysis revealed that the alternating Co(III)/(II) redox reactions were associated with OH formation (hydrogenation)-deformation (dehydrogenation) of the amorphous aluminosilicate matrix formed in situ at the SiO2/γ-Al2O3 hetero interface, and the redox reactions were governed by the H2 partial pressure at 250–500 °C. As a result, a supported mesoporous γ-Al2O3/Co-doped amorphous SiO2/mesoporous γ-Al2O3 three-layered composite membrane exhibited an H2-triggered chemical valve property: mesopores under H2 flow (open) and micropores under He flow (closure) at 300–500 °C.
Collapse
Affiliation(s)
- Shotaro Tada
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; (S.T.); (S.S.); (A.M.); (H.M.); (S.A.); (T.A.); (Y.D.); (S.H.)
| | - Shota Saito
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; (S.T.); (S.S.); (A.M.); (H.M.); (S.A.); (T.A.); (Y.D.); (S.H.)
| | - Akito Mori
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; (S.T.); (S.S.); (A.M.); (H.M.); (S.A.); (T.A.); (Y.D.); (S.H.)
| | - Hideki Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; (S.T.); (S.S.); (A.M.); (H.M.); (S.A.); (T.A.); (Y.D.); (S.H.)
| | - Shiori Ando
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; (S.T.); (S.S.); (A.M.); (H.M.); (S.A.); (T.A.); (Y.D.); (S.H.)
| | - Toru Asaka
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; (S.T.); (S.S.); (A.M.); (H.M.); (S.A.); (T.A.); (Y.D.); (S.H.)
| | - Yusuke Daiko
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; (S.T.); (S.S.); (A.M.); (H.M.); (S.A.); (T.A.); (Y.D.); (S.H.)
| | - Sawao Honda
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; (S.T.); (S.S.); (A.M.); (H.M.); (S.A.); (T.A.); (Y.D.); (S.H.)
| | - Samuel Bernard
- Centre Européen de la Céramique, University of Limoges, 12 Rue Atlantis, 87068 Limoges, France;
| | - Yuji Iwamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; (S.T.); (S.S.); (A.M.); (H.M.); (S.A.); (T.A.); (Y.D.); (S.H.)
- Correspondence: ; Tel.: +81-52-735-5276
| |
Collapse
|
7
|
Hydrogen Selective SiCH Inorganic-Organic Hybrid/γ-Al 2O 3 Composite Membranes. MEMBRANES 2020; 10:membranes10100258. [PMID: 32992911 PMCID: PMC7600925 DOI: 10.3390/membranes10100258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
Solar hydrogen production via the photoelectrochemical water-splitting reaction is attractive as one of the environmental-friendly approaches for producing H2. Since the reaction simultaneously generates H2 and O2, this method requires immediate H2 recovery from the syngas including O2 under high-humidity conditions around 50 °C. In this study, a supported mesoporous γ-Al2O3 membrane was modified with allyl-hydrido-polycarbosilane as a preceramic polymer and subsequently heat-treated in Ar to deliver a ternary SiCH organic–inorganic hybrid/γ-Al2O3 composite membrane. Relations between the polymer/hybrid conversion temperature, hydrophobicity, and H2 affinity of the polymer-derived SiCH hybrids were studied to functionalize the composite membranes as H2-selective under saturated water vapor partial pressure at 50 °C. As a result, the composite membranes synthesized at temperatures as low as 300–500 °C showed a H2 permeance of 1.0–4.3 × 10−7 mol m−2 s−1 Pa−1 with a H2/N2 selectivity of 6.0–11.3 under a mixed H2-N2 (2:1) feed gas flow. Further modification by the 120 °C-melt impregnation of low molecular weight polycarbosilane successfully improved the H2-permselectivity of the 500 °C-synthesized composite membrane by maintaining the H2 permeance combined with improved H2/N2 selectivity as 3.5 × 10−7 mol m−2 s−1 Pa−1 with 36. These results revealed a great potential of the polymer-derived SiCH hybrids as novel hydrophobic membranes for purification of solar hydrogen.
Collapse
|