1
|
Lee S, Laris OA, Hjelvik EA, Hoek EMV, Straub AP. High Pressure Resistance in Omniphobic Distillation Membranes with Re-entrant Nanostructures. NANO LETTERS 2025; 25:7170-7177. [PMID: 40251708 DOI: 10.1021/acs.nanolett.5c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
We developed pressure-resistant omniphobic membranes that enable stable distillation of low-surface-tension liquids at applied pressures exceeding 15 bar. Membranes were synthesized by grafting re-entrant nanostructures onto porous alumina membranes, followed by hydrophobic modification. The membranes exhibited a high liquid entry pressure of 36.2 bar with water and withstood an applied pressure up to 15.5 bar with a low-surface-tension 15 wt % ethanol-water mixture. Simulations revealed that the enhanced wetting resistance is due to the presence of re-entrant structures, which facilitated a 220% increase in wetting pressure for the low-surface-tension liquid compared to a control membrane with cylindrical pores. We further demonstrated stable pressure-driven distillation of low-surface-tension liquids, achieving higher than 97% salt rejection. This work is the first demonstration of distillation membranes operating with low-surface-tension liquids under high applied pressures and provides critical validation of wettability theory under extreme pressures.
Collapse
Affiliation(s)
- Sangsuk Lee
- Department of Civil, Environmental & Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Omar A Laris
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Elizabeth A Hjelvik
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Eric M V Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Anthony P Straub
- Department of Civil, Environmental & Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Lai YJ, Oh PC, Chew TL, Ahmad AL. Surface Repellency beyond Hydrophobicity: A Review on the Latest Innovations in Superomniphobic Surfaces. ACS OMEGA 2025; 10:5172-5192. [PMID: 39989837 PMCID: PMC11840608 DOI: 10.1021/acsomega.4c08269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 02/25/2025]
Abstract
Superhydrophobic surfaces have long faced challenges in repelling low-surface-tension liquids like oil and alcohol, limiting their practical applications. Over the past few years, researchers have been actively looking for new alternatives to overcome this issue. Recently, superomniphobic surfaces have attracted significant interest due to their ability to repel both high- and low-surface-tension liquids. Compared with superhydrophobic surfaces, superomniphobic surfaces provide enhanced liquid repellency, making them more suitable for industrial and real-world applications. This Review explores the recent advancements in the fabrication of superomniphobic surfaces. Three basic wetting principles, Young's, Wenzel's, and Cassie-Baxter's equations, are discussed. The vital role of low surface energy and high surface roughness of hierarchical and re-entrant structures in achieving a steady Cassie-Baxter state that has a low contact area between the solid surface and liquid droplet is emphasized. Additionally, a comprehensive description of various fabrication techniques, characterizations, and practical applications of superomniphobic surfaces is provided. Finally, the challenges and future prospects regarding this research area are addressed. This comprehensive review aims to inspire researchers to refine and enhance current development methods of superomniphobic surfaces and stimulate further exploration in the research field.
Collapse
Affiliation(s)
- Yee Jack Lai
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Carbon
Capture, Utilization and Storage Centre (CCUSC), Institute of Sustainable
Energy and Resources (ISER), Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Pei Ching Oh
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Carbon
Capture, Utilization and Storage Centre (CCUSC), Institute of Sustainable
Energy and Resources (ISER), Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Thiam Leng Chew
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Carbon
Capture, Utilization and Storage Centre (CCUSC), Institute of Sustainable
Energy and Resources (ISER), Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Abdul Latif Ahmad
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal 14300, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Paul S, Bhoumick MC, Mitra S. Fouling Reduction and Thermal Efficiency Enhancement in Membrane Distillation Using a Bilayer-Fluorinated Alkyl Silane-Carbon Nanotube Membrane. MEMBRANES 2024; 14:152. [PMID: 39057660 PMCID: PMC11279159 DOI: 10.3390/membranes14070152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
In this study, we report the robust hydrophobicity, lower fouling propensity, and high thermal efficiency of the 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS)-coated, carbon nanotube-immobilized membrane (CNIM) when applied to desalination via membrane distillation. Referred to as FAS-CNIM, the membrane was developed through a process that combined the drop-casting of nanotubes flowed by a dip coating of the FAS layer. The membranes were tested for porosity, surface morphology, thermal stability, contact angle, and flux. The static contact angle of the FAS-CNIM was 153 ± 1°, and the modified membrane showed enhancement in water flux by 18% compared to the base PTFE membrane. The flux was tested at different operating conditions and the fouling behavior was investigated under extreme conditions using a CaCO3 as well as a mixture of CaCO3 and CaSO4 solution. The FAS-CNIM showed significantly lower fouling than plain PTFE or the CNIM; the relative flux reduction was 34.4% and 37.6% lower than the control for the CaCO3 and CaCO3/CaSO4 mixed salt solution. The FAS-CNIM exhibited a notable decrease in specific energy consumption (SEC). Specifically, the SEC for the FAS-CNIM measured 311 kwh/m3 compared to 330.5 kwh/m3 for the CNIM and 354 kwh/m3 for PTFE using a mixture of CaCO3/CaSO4. This investigation underscores the significant contribution of the carbon nanotubes' (CNTs) intermediate layer in creating a durable superhydrophobic membrane, highlighting the potential of utilizing carbon nanotubes for tailored interface engineering to tackle fouling for salt mixtures. The innovative design of a superhydrophobic membrane has the potential to alleviate wetting issues resulting from low surface energy contaminants present in the feed of membrane distillation processes.
Collapse
Affiliation(s)
| | | | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (S.P.); (M.C.B.)
| |
Collapse
|
4
|
Kogler A, Sharma N, Tiburcio D, Gong M, Miller DM, Williams KS, Chen X, Tarpeh WA. Long-Term Robustness and Failure Mechanisms of Electrochemical Stripping for Wastewater Ammonia Recovery. ACS ENVIRONMENTAL AU 2024; 4:89-105. [PMID: 38525023 PMCID: PMC10958661 DOI: 10.1021/acsenvironau.3c00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 03/26/2024]
Abstract
Nitrogen in wastewater has negative environmental, human health, and economic impacts but can be recovered to reduce the costs and environmental impacts of wastewater treatment and chemical production. To recover ammonia/ammonium (total ammonia nitrogen, TAN) from urine, we operated electrochemical stripping (ECS) for over a month, achieving 83.4 ± 1.5% TAN removal and 73.0 ± 2.9% TAN recovery. With two reactors, we recovered sixteen 500-mL batches (8 L total) of ammonium sulfate (20.9 g/L TAN) approaching commercial fertilizer concentrations (28.4 g/L TAN) and often having >95% purity. While evaluating the operation and maintenance needs, we identified pH, full-cell voltage, product volume, and water flux into the product as informative process monitoring parameters that can be inexpensively and rapidly measured. Characterization of fouled cation exchange and omniphobic membranes informs cleaning and reactor modifications to reduce fouling with organics and calcium/magnesium salts. To evaluate the impact of urine collection and storage on ECS, we conducted experiments with urine at different levels of dilution with flush water, extents of divalent cation precipitation, and degrees of hydrolysis. ECS effectively treated urine under all conditions, but minimizing flush water and ensuring storage until complete hydrolysis would enable energy-efficient TAN recovery. Our experimental results and cost analysis motivate a multifaceted approach to improving ECS's technical and economic viability by extending component lifetimes, decreasing component costs, and reducing energy consumption through material, reactor, and process engineering. In summary, we demonstrated urine treatment as a foothold for electrochemical nutrient recovery from wastewater while supporting the applicability of ECS to seven other wastewaters with widely varying characteristics. Our findings will facilitate the scale-up and deployment of electrochemical nutrient recovery technologies, enabling a circular nitrogen economy that fosters sanitation provision, efficient chemical production, and water resource protection.
Collapse
Affiliation(s)
- Anna Kogler
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Neha Sharma
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94205, United States
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - Diana Tiburcio
- Department
of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Meili Gong
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - Dean M. Miller
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - Kindle S. Williams
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - Xi Chen
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| | - William A. Tarpeh
- Department
of Chemical Engineering, Stanford University, 443 Via Ortega, Room 387, Stanford, California 94305, United States
| |
Collapse
|
5
|
Hu J, Harandi HB, Chen Y, Zhang L, Yin H, He T. Anisotropic gypsum scaling of corrugated polyvinylidene fluoride hydrophobic membrane in direct contact membrane distillation. WATER RESEARCH 2023; 244:120513. [PMID: 37651864 DOI: 10.1016/j.watres.2023.120513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Membrane distillation (MD) technology has gained a lot of attention for treatment of geothermal brine, high salinity waste streams. However, mineral scaling remains a major challenge when treating complex high-salt brines. The development of surface-patterned superhydrophobic membranes is one of the core strategies to solve this problem. We prepared flat sheet membranes (F-PVDF) and hydrophobic membranes with micron-scale corrugated pattern (C-PVDF) using a phase separation method. Their scaling behavior was systematically evaluated using calcium sulfate solutions and the impact of the feed flow was innovatively investigated. Although C-PVDF shows higher contact angle and lower sliding angle than F-PVDF, the scaling resistance of C-PVDF in the perpendicular flow direction has worst scaling resistance. Although the nucleation barrier of the corrugated membrane is the same at both parallel and perpendicular flow directions based on the traditional thermodynamic nucleation theory, experimental observations show that the C-PVDF has the best scaling resistance in the parallel flow direction. A 3D computational fluid dynamics (CFD) model was used and the hydrodynamic state of the pattern membranes was assessed as a determinant of the scaling resistance. The corrugated membrane with parallel flow mode (flow direction in parallel to the corrugation ridge) induces higher fluid velocity within the channel, which mitigated the deposition of crystals. While in the perpendicular flow mode (flow direction in perpendicular to the corrugation ridge), the solutions confined in the corrugated grooves due to vortex shielding, which aggravates the scaling. These results shed light on the mechanism of scaling resistance of corrugated membranes from a hydrodynamic perspective and reveal the mechanism of anisotropy exhibited by corrugated membranes in MD.
Collapse
Affiliation(s)
- Jiaqi Hu
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hesam Bazargan Harandi
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yecang Chen
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Liwei Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
7
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
8
|
Baroud TN. Tuning PVDF Membrane Porosity and Wettability Resistance via Varying Substrate Morphology for the Desalination of Highly Saline Water. MEMBRANES 2023; 13:395. [PMID: 37103822 PMCID: PMC10141797 DOI: 10.3390/membranes13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Here, we report the fabrication of a series of highly efficient polyvinylidene fluoride (PVDF) membranes via substrate morphology variations. A wide range of sandpaper grit sizes (150-1200) were utilized as casting substrates. The effect of the penetration of abrasive particles present on the sandpapers on the casted polymer solution was tuned, and the impact of these particles on porosity, surface wettability, liquid entry pressure and morphology were investigated. The membrane distillation performance of the developed membrane on sandpapers was evaluated for the desalination of highly saline water (70,000 ppm). Interestingly, the utilization of cheap and widely available sandpapers as a substrate for casting can not only help in tuning the MD performance, but also in producing highly efficient membranes with stable salt rejection (up to 100%) and a 210% increase in the permeate flux over 24 h. The findings in this study will help in delineating the role of substrate nature in controlling the produced membrane characteristics and performance.
Collapse
Affiliation(s)
- Turki N. Baroud
- Materials Science & Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Membranes & Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
9
|
Chimanlal I, Nthunya LN, Mahlangu OT, Kirkebæk B, Ali A, Quist-Jensen CA, Richards H. Nanoparticle-Enhanced PVDF Flat-Sheet Membranes for Seawater Desalination in Direct Contact Membrane Distillation. MEMBRANES 2023; 13:317. [PMID: 36984704 PMCID: PMC10052890 DOI: 10.3390/membranes13030317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
In this study, hydrophobic functionalized carbon nanotubes (fCNTs) and silica nanoparticles (fSiO2NPs) were incorporated into polyvinylidene fluoride (PVDF) flat-sheet membranes to improve their performance in membrane distillation (MD). The performance of the as-synthesized membranes was evaluated against commercial reference polytetrafluoroethylene (PTFE) flat-sheet membranes. The water contact angle (WCA) and liquid entry pressure (LEP) of the PVDF membrane were compromised after incorporation of hydrophilic pore forming polyvinylpyrrolidone (PVP). These parameters were key in ensuring high salt rejections in MD processes. Upon incorporation of fCNTS and fSiO2NPs, WCA and LEP improved to 103.61° and 590 kPa, respectively. Moreover, the NP additives enhanced membrane surface roughness. Thus, an increase in membrane roughness improved WCA and resistance to membrane wetting. High salt rejection (>99%) and stable fluxes (39.77 kg m-2 h-1) were recorded throughout a 3 h process evaluation where 3.5 wt% NaCl solution was used as feed. These findings were recorded at feed temperature of 60 ℃. Evidently, this study substantiated the necessity of high feed temperatures towards high rates of water recovery.
Collapse
Affiliation(s)
- Indira Chimanlal
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa; (I.C.); (L.N.N.)
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Lebea N. Nthunya
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa; (I.C.); (L.N.N.)
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Oranso T. Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa;
| | - Bastian Kirkebæk
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Aamer Ali
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Cejna A. Quist-Jensen
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Heidi Richards
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa; (I.C.); (L.N.N.)
| |
Collapse
|
10
|
Nambikkattu J, Jacob Kaleekkal N. Investigating the performance of surface-engineered membranes for direct contact membrane distillation. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2178011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
11
|
Abid MB, Wahab RA, Salam MA, Gzara L, Moujdin IA. Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon 2023; 9:e12810. [PMID: 36793956 PMCID: PMC9922933 DOI: 10.1016/j.heliyon.2023.e12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.
Collapse
Affiliation(s)
- Monis Bin Abid
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
| | - Iqbal Ahmed Moujdin
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Chimanlal I, Nthunya LN, Quist-Jensen C, Richards H. Membrane distillation crystallization for water and mineral recovery: The occurrence of fouling and its control during wastewater treatment. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1066027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Membrane distillation crystallization (MDC) is an emerging technology envisaged to manage challenges affecting the desalination industry. This technology can sustainably treat concentrated solutions of produced water and industrially discharged saline wastewater. Simultaneous recovery of clean water and minerals is achieved through the integration of crystallization to membrane distillation (MD). MDC has received vast research interest because of its potential to treat hypersaline solutions. However, MDC still faces challenges in harnessing its industrial applications. Technically, MDC is affected by fouling/scaling and wetting thereby hindering practical application at the industrial level. This study reviews the occurrence of membrane fouling and wetting experienced with MDC. Additionally, existing developments carried out to address these challenges are critically reviewed. Finally, prospects suggesting the sustainability of this technology are highlighted.
Collapse
|
14
|
Yu C, Song J, Yan Y, Gao J, Xing W, Meng M, Yan Y, Ma Z, Wu Y. A “graphdiyne-like” anti-fouling TBBPA molecularly imprinted membrane synthesized based on the delayed phase inversion method: A concomitant permeability and selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Asymmetric superwetting Janus structure for fouling- and scaling-resistant membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Liu N, Yang Z, Sun Y, Shan L, Li H, Wang Z. Slippery Mechanism for Enhancing Separation and Anti-fouling of the Superhydrophobic Membrane in a Water-in-Oil Emulsion: Evaluating Water Adhesion of the Membrane Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8312-8323. [PMID: 35767278 DOI: 10.1021/acs.langmuir.2c00767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Water removal from water-in-oil emulsions with superhydrophobic microporous membranes is an important industrial process, where the interface property between the membrane and feed becomes critical. Here, superhydrophobic isotactic polypropylene (iPP) microporous membranes with the "lotus effect" and "rose-petal effect" were prepared via utilizing micromolding phase separation, where the former surface exhibited a water contact angle of 153° and a sliding angle of 3.2°, while the latter surface exhibited a water contact angle of 151° and adhesive characteristics. Surface topography and wettability analysis revealed that surface hydrophobicity and water adhesion could be improved by reducing the periodic distance and diameter and increasing the height of the micron-scale structure. When treating both water-in-oil emulsions and water-in-oil emulsions containing BSA pollutants, the iPP membrane with the "lotus effect" was superior to that with the "rose-petal effect" in terms of oil permeate flux, separation efficiency, anti-fouling ability, and recyclability (20 cycles). To explain this phenomenon, a "slippery" mechanism was introduced that correlated the sliding angle to the slippery surface of the iPP membrane with the "lotus effect" and its anti-water adhesion property. This work proposed a theoretical platform for investigating the effect of water adhesion on superhydrophobic membranes in terms of oil-water separation efficiency and anti-fouling ability, thereby providing a definite basis for preparing superhydrophobic membranes with efficient separation and fouling resistance capabilities.
Collapse
Affiliation(s)
- Ning Liu
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhensheng Yang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yue Sun
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Linna Shan
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiying Wang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
17
|
Kim J, Yun ET, Tijing L, Shon HK, Hong S. Mitigation of fouling and wetting in membrane distillation by electrical repulsion using a multi-layered single-wall carbon nanotube/polyvinylidene fluoride membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Tunable hydrophobicity and roughness on PVDF surface by grafting to mode – Approach to enhance membrane performance in membrane distillation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Li J, Ren LF, Huang M, Yang J, Shao J, He Y. Facile preparation of omniphobic PDTS-ZnO-PVDF membrane with excellent anti-wetting property in direct contact membrane distillation (DCMD). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Liao X, Dai P, Wang Y, Zhang X, Liao Y, You X, Razaqpur AG. Engineering anti-scaling superhydrophobic membranes for photothermal membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Zou D, Kim HW, Jeon SM, Lee YM. Fabrication and modification of PVDF/PSF hollow-fiber membranes for ginseng extract and saline water separations via direct contact membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Li H, Feng H, Li M, Zhang X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Water Flux Prediction in Direct Contact Membrane Distillation Subject to Inorganic Fouling. MEMBRANES 2022; 12:membranes12020157. [PMID: 35207078 PMCID: PMC8879881 DOI: 10.3390/membranes12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
Freshwater is a limited resource, which has driven the development of new purification and water-reuse technologies. One promising technology for water treatment is membrane distillation (MD). One of the main problems of MD, and of many desalination technologies, is membrane fouling, which reduces the performance of the membrane. This work presents a mathematical model that aims to predict distillate fluxes in direct-contact MD when fouling occurs as salts are deposited onto the membrane surface, forming an inorganic fouling layer. The mathematical model uses a heat- and mass-transfer formulation for prediction of the distillate flux under steady state conditions, and it is combined with the cake-filtration theory to represent the distillate fluxes after the onset of membrane fouling. Model results agree well with experimental observation of distillate fluxes, both before (~12–14 kg m−2 h−1) and after the onset of membrane fouling, with root-mean-square errors smaller than 1.4 kg m−2 h−1 in all the experiments. These results suggest that the cake-filtration theory can be used to represent water flux decline in MD membranes prone to inorganic fouling. From our experiments and from the modelling exercise, we found that the onset of membrane failure was relatively constant; the precipitation reaction constant is conditioned by the physicochemical interaction between the feed solution and the membrane; and the rate of flux decline after membrane fouling depends on flow conditions as well as on the precipitation compound. However, the proposed model has limitations that must be addressed in future investigations to validate it under a wider range of operating conditions, for membranes composed by other materials and with different feed solutions to address organic, biological, and/or colloidal fouling, which typically occur under real conditions.
Collapse
|
24
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Omniphobic membrane with nest-like re-entrant structure via electrospraying strategy for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Ni T, Lin J, Kong L, Zhao S. Omniphobic membranes for distillation: Opportunities and challenges. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Liquid-like surface modification for effective anti-scaling membrane distillation with uncompromised flux. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
29
|
Al-Gharabli S, Abu El-Rub Z, Hamad E, Kujawski W, Flanc Z, Pianka K, Kujawa J. Surfaces with Adjustable Features-Effective and Durable Materials for Water Desalination. Int J Mol Sci 2021; 22:ijms222111743. [PMID: 34769183 PMCID: PMC8583984 DOI: 10.3390/ijms222111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Materials based on PVDF with desirable and controllable features were successfully developed. The chemistry and roughness were adjusted to produce membranes with improved transport and separation properties. Membranes were activated using the novel piranha approach to generate OH-rich surfaces, and finally furnished with epoxy and long-alkyl moieties via stable covalent attachment. The comprehensive materials characterization provided a broad spectrum of data, including morphology, textural, thermal properties, and wettability features. The defined materials were tested in the air-gap membrane distillation process for desalination, and improvement compared with pristine PVDF was observed. An outstanding behavior was found for the PVDF sample equipped with long-alkyl chains. The generated membrane showed an enhancement in the transport of 58-62% compared to pristine. A relatively high contact angle of 148° was achieved with a 560 nm roughness, producing a highly hydrophobic material. On the other hand, it was possible to tone the hydrophobicity and significantly reduce adhesion work. All materials were highly stable during the long-lasting separation process and were characterized by excellent effectiveness in water desalination.
Collapse
Affiliation(s)
- Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman 11180, Jordan;
- Correspondence: (S.A.-G.); (J.K.); Tel./Fax: +962-6-429-4404 (S.A.-G.); +48-56-611-43-15 (J.K.); Fax: +48-56-611-45-26 (J.K.)
| | - Ziad Abu El-Rub
- Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman 11180, Jordan;
| | - Eyad Hamad
- Biomedical Engineering Department, German Jordanian University, Amman 11180, Jordan;
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (W.K.); (Z.F.); (K.P.)
| | - Zuzanna Flanc
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (W.K.); (Z.F.); (K.P.)
| | - Katarzyna Pianka
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (W.K.); (Z.F.); (K.P.)
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (W.K.); (Z.F.); (K.P.)
- Correspondence: (S.A.-G.); (J.K.); Tel./Fax: +962-6-429-4404 (S.A.-G.); +48-56-611-43-15 (J.K.); Fax: +48-56-611-45-26 (J.K.)
| |
Collapse
|
30
|
Zhong L, An L, Han Y, Zhu Z, Liu D, Liu D, Zuo D, Wang W, Ma J. In Situ Three-Dimensional Welded Nanofibrous Membranes for Robust Membrane Distillation of Concentrated Seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11308-11317. [PMID: 34319084 DOI: 10.1021/acs.est.1c02687] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane distillation (MD) is a promising technology for treating the concentrated seawater discharged from the desalination process. Interconnected porous membranes, fabricated by additive manufacturing, have received significant attention for MD technology because of their excellent permeability. However, their poor hydrophobic durability induced by the deformation of pores constrains their water desalination performance. Herein, an in situ three-dimensional (3D) welding approach involving emulsion electrospinning is reported for fabricating robust nanofibrous membranes. The reported method is simple and effective for welding nanofibers at their intersections, and the reinforced membrane pores are uniform in the 3D space. The results show that the in situ 3D welded nanofibrous membrane, with a stability of 170 h and water recovery of 76.9%, exhibits better desalination performance than the nonwelded (superhydrophobic) nanofibrous membrane and the postwelded (superhydrophobic) nanofibrous membrane. Furthermore, the stability mechanism of the in situ 3D welded nanofibrous membrane and the two different wetting mechanisms of the nonwelded and postwelded nanofibrous membranes were investigated in the current work. More significantly, the in situ 3D welded nanofibrous membrane can further concentrate the actual concentrated seawater (121°E, 37°N) to crystallization, demonstrating its potential applications for the desalination of challenging concentrated seawater.
Collapse
Affiliation(s)
- Lingling Zhong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liuqian An
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Danye Zuo
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
31
|
Stability of Ar/O 2 Plasma-Treated Polypropylene Membranes Applied for Membrane Distillation. MEMBRANES 2021; 11:membranes11070531. [PMID: 34357181 PMCID: PMC8306343 DOI: 10.3390/membranes11070531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
In the present work, Ar/O2 plasma treatment was used as a surface modification tool for polypropylene (PP) membranes. The effect of the plasma conditions on the properties of the modified PP surface has been investigated. For this purpose, the influence of gas composition and its flow rate, plasma power excitation as well as treatment time on the contact angle of PP membranes has been investigated. The properties of used membranes were determined after various periods of time: immediately after the modification process as well as after one, four and five years of storage. Moreover, the used membranes were evaluated in terms of their performance in long-term MD process. Through detailed studies, we demonstrated that the performed plasma treatment process effectively enhanced the performance of the modified membranes. In addition, it was shown that the surface modification did not affect the degradation of the membrane matrix. Indeed, the used membranes maintained stable process properties throughout the studied period.
Collapse
|
32
|
Antifouling Membranes Based on Cellulose Acetate (CA) Blended with Poly(acrylic acid) for Heavy Metal Remediation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fouling has been widely recognized as the Achilles’ heel of membrane processes and the growing perception about the relevance of this critical issue has driven the development of advanced antifouling strategies. Herein, novel fouling-resistant ultrafiltration (UF) membranes for Cadmium (Cd) remediation were developed via a blending method by combining the flexibility of cellulose acetate (CA) with the complex properties of poly(acrylic acid) (PAA). A systematic characterization, based on differential scanning calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR), confirmed the homogeneity of the blend favored by hydrogen interconnections between CA and PAA polymeric chains. The concentration of PAA with respect to CA played a key role in tuning the morphology and the hydrophilic character of the novel UF membranes prepared via non-solvent-induced phase separation (NIPS). UF experiments revealed the tremendous advantages of the blend since CA/PAA membranes showed superior performance with respect to the neat CA membrane in terms of (i) water permeability; (ii) Cd rejection; and (iii) antifouling resistance to humic acid (HA). Concisely, the increasing of the concentration of PAA in the casting solution was found to be beneficial to improve the flux recovery ratio (FRR) coupled with the decline of the total fouling ratio (Rt). Overall, PAA is an effective additive to prepare CA membranes with enhanced antifouling properties exploitable for the remediation of water bodies contaminated by heavy metals via UF process.
Collapse
|
33
|
Liu L, He H, Wang Y, Tong T, Li X, Zhang Y, He T. Mitigation of gypsum and silica scaling in membrane distillation by pulse flow operation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Zhao X, Park DS, Choi J, Park S, Soper SA, Murphy MC. Flexible-templated imprinting for fluorine-free, omniphobic plastics with re-entrant structures. J Colloid Interface Sci 2021; 585:668-675. [PMID: 33127056 PMCID: PMC8483707 DOI: 10.1016/j.jcis.2020.10.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Compared to vertical micro-pillars, re-entrant micro-structures exhibited superior omniphobicity for suspending liquids to Cassie-Baxter state. However, the existing re-entrant structures rely on complex multi-step deposition and etching procedures. The conventional, rigid-templated imprinting would instead damage the re-entrant structures. This leads to the question: is it possible to preserve the re-entrant curvatures by a flexible-templated imprinting? EXPERIMENTS We facilely imprinted the re-entrant structures on a plastic substrate using a flexible nylon-mesh template. The effect of imprinting time (15-35 min), temperature (110-120 °C) and pressure (15-50 Bar) was investigated. To further improve the liquid-repellency and abrasion resistance, the silica nanoparticles (30-650 nm) along with epoxy resin binder (10 mg/mL) were pre-coated. FINDINGS A one-step imprinting is sufficient to fabricate the re-entrant structures by utilizing flexible nylon-mesh template, without damaging the imprinted structures after the demolding process. The pre-coated silica nanoparticles and epoxy resin (1) improved liquid repellency by introducing hierarchical surface structures (e.g. contact angle hysteresis of olive oil reduced > 10°), and (2) acted as a protective layer against mechanical abrasion (omniphobicity maintained after 25 cycles, ~1.6 kPa sand paper abrasion). Additionally, the fluorine-free post-treatment was sufficient for the omniphobicity on the obtained plastic structures.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Daniel S Park
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Junseo Choi
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Sungook Park
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Steven A Soper
- Departments of Chemistry and Mechanical Engineering, University of Kansas, Lawrence, KS 66045, United States
| | - Michael C Murphy
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
35
|
|
36
|
Zhang W, Hu B, Wang Z, Li B. Fabrication of omniphobic PVDF composite membrane with dual-scale hierarchical structure via chemical bonding for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Na+/Mg2+ interactions on membrane distillation permeation flux and crystallization performance during high saline solution treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
39
|
Fabrication of superhydrophobic PDTS-ZnO-PVDF membrane and its anti-wetting analysis in direct contact membrane distillation (DCMD) applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Effects of different secondary nano-scaled roughness on the properties of omniphobic membranes for brine treatment using membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Kumar R, Ahmed M, Bhadrachari G, Al-Missri A, Thomas JP. The effect of chemistry of nanoparticle modifier groups on the PVDF membranes for membrane distillation. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Yin Y, Jeong N, Tong T. The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118503] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Modification of PET Ion-Track Membranes by Silica Nanoparticles for Direct Contact Membrane Distillation of Salt Solutions. MEMBRANES 2020; 10:membranes10110322. [PMID: 33143326 PMCID: PMC7694013 DOI: 10.3390/membranes10110322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022]
Abstract
The paper describes desalination by membrane distillation (MD) using ion-track membranes. Poly(ethylene terephthalate) (PET) ion-track membranes were hydrophobized by the immobilization of hydrophobic vinyl-silica nanoparticles (Si NPs). Si NPs were synthesized by the sol-gel method, and the addition of the surfactant led to the formation of NPs with average size of 40 nm. The thermal initiator fixed to the surface of membranes allowed attachment of triethoxyvinyl silane Si NPs at the membrane surface. To further increase hydrophobicity, ethoxy groups were fluorinated. The morphology and chemical structure of prepared membranes were characterized by SEM, FTIR, XPS spectroscopy, and a gas permeability test. Hydrophobic properties were evaluated by contact angle (CA) and liquid entry pressure (LEP) measurements. Membranes with CA 125–143° were tested in direct contact membrane distillation (DCMD) of 30 g/L saline solution. Membranes showed water fluxes from 2.2 to 15.4 kg/(m2·h) with salt rejection values of 93–99%.
Collapse
|
44
|
Recent Structure Development of Poly(vinylidene fluoride)-Based Piezoelectric Nanogenerator for Self-Powered Sensor. ACTUATORS 2020. [DOI: 10.3390/act9030057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As the internet of things (IoT) era approaches, various sensors, and wireless electronic devices such as smartphones, smart watches, and earphones are emerging. As the types and functions of electronics are diversified, the energy consumption of electronics increases, which causes battery charging and maintenance issues. The piezoelectric nanogenerator (PENG) received great attention as an alternative to solving the energy issues of future small electronics. In particular, polyvinylidene fluoride (PVDF) piezoelectric polymer-based PENGs are strong potential candidate with robust mechanical properties and a high piezoelectric coefficient. In this review, we summarize the recent significant advances of the development of PVDF-based PENGs for self-powered energy-harvesting systems. We discuss the piezoelectric properties of the various structures of PVDF-based PENGs such as thin film, microstructure, nanostructure, and nanocomposite.
Collapse
|
45
|
Wang Y, Han M, Liu L, Yao J, Han L. Beneficial CNT Intermediate Layer for Membrane Fluorination toward Robust Superhydrophobicity and Wetting Resistance in Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20942-20954. [PMID: 32275384 DOI: 10.1021/acsami.0c03577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Robust membrane hydrophobicity is crucial in membrane distillation (MD) to produce clean water, yet challenged by wetting phenomenon. We herein proposed a robust superhydrophobization process, by making use of a carbon nanotube (CNT) intermediate layer over commercial hydrophobic membrane, indirectly grafting the low-surface-energy material 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS), with the achieved membrane denoted as PVDF-CNT-FAS, in systematic comparison with direct grafting FAS on alkalinized PVDF denoted as PVDF-OH-FAS. Superhydrophobicity with water contact angle of 180° was easily achieved from initial hydrophilic interface for both two resultant membranes. Interestingly, the existence of a CNT intermediate layer significantly maintained the stable hydrophobicity in various harsh conditions and improved mechanical properties, at an expense of ca. 20% smaller pore size and extended membrane thickness than PVDF-OH-FAS. In the MD experiment, the PVDF-CNT-FAS exhibited no vapor flux sacrifice, giving constant flux with the control and doubled that for PVDF-OH-FAS. A mass-heat transfer modeling suggested no significant heat loss but facilitated vapor flux with the CNT layer, unlike the impeded transfer for the counterpart membrane. A superior wetting resistance against 0.4 mM SDS further confirmed the benefit of constructing the CNT intermediate layer, presumably because of its excellent slippery property. This study demonstrates the important role of the CNT intermediate layer toward robust superhydrophobic membrane, suggesting the interest of applying the functional nanomaterial for controllable interface design.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Minyuan Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Lang Liu
- Key Laboratory of low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400045, PR China
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
46
|
Kharraz JA, Farid MU, Khanzada NK, Deka BJ, Arafat HA, An AK. Macro-corrugated and nano-patterned hierarchically structured superomniphobic membrane for treatment of low surface tension oily wastewater by membrane distillation. WATER RESEARCH 2020; 174:115600. [PMID: 32088385 DOI: 10.1016/j.watres.2020.115600] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
A hierarchically assembled superomniphobic membrane with three levels of reentrant structure was designed and fabricated to enable effective treatment of low surface tension, hypersaline oily wastewaters using direct contact membrane distillation (DCMD). The overall structure is a combination of macro corrugations obtained by surface imprinting, with the micro spherulites morphology achieved through the applied phase inversion method and nano patterns obtained by fluorinated Silica nanoparticles (SiNPs) coating. This resulted in a superomniphobic membrane surface with remarkable anti-wetting properties repelling both high surface tension water and low surface tension oils. Measurements of contact angle (CA) with DI water, an anionic surfactant, oil, and ethanol demonstrated a robust wetting resistance against low surface tension liquids showing both superhydrophobicity and superoleophobicity. CA values of 160.8 ± 2.3° and 154.3 ± 1.9° for water and oil were obtained, respectively. Calculations revealed a high liquid-vapor interface for the fabricated membrane with more than 89% of the water droplet contact area being with air pockets entrapped between adjacent SiNPs and only 11% come into contact with the solid membrane surface. Moreover, the high liquid-vapor interface imparts the membrane with high liquid repellency, self-cleaning and slippery effects, characterized by a minimum droplet-membrane interaction and complete water droplet bouncing on the surface within only 18 ms. When tested in DCMD with synthetic hypersaline oily wastewaters, the fabricated superomniphobic membrane demonstrated stable, non-wetting MD operation over 24 h, even at high concentrations of low surface tension 1.0 mM Sodium dodecyl sulfate and 400 ppm oil, potentially offering a sustainable option for treatment of low surface tension oily industrial wastewater.
Collapse
Affiliation(s)
- Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Hassan A Arafat
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|