1
|
Zhang J, Ge Q. Recycling scale inhibitor wastes into pH-responsive complexes to treat wastewater produced from spent lithium-ion battery disposal. WATER RESEARCH 2024; 260:121939. [PMID: 38901308 DOI: 10.1016/j.watres.2024.121939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
A large amount of organophosphorus-containing wastewater is produced in spent lithium-ion battery disposal. Forward osmosis (FO) offers unique advantages in purifying this kind of wastewater if suitable draw solutes - the core of FO technology, are available. Herein we synthesize several pH-sensitive zinc complexes, namely ZnATMP-iNa (i = 0, 1, 2, 3, 4), from ZnSO4 and amino tris(methylene phosphonic acid) (ATMP) obtained from scale inhibitor wastes for organophosphorus-containing wastewater remediation. Among these ZnATMP-iNa, ZnATMP-3Na best meets the standards of an ideal draw solute. This makes ZnATMP-3Na outperform other reported draw solutes. 0.6 M ZnATMP-3Na produces a water flux of 12.7 LMH, 136 % higher than that of NaCl and a solute loss of 0.015 g/L, lower than that of NH4HCO3 (0.83 g/L). In organophosphorus-containing wastewater treatment, ZnATMP-3Na has higher water recovery efficiency (8.3 LMH) and sustainability than NaCl and NH4HCO3, and is sufficient to handle large quantities of wastewater. Remarkably, the pH-responsive property allows ZnATMP-3Na to be readily recovered through pH-control and reused in FO. The ionic property, expanded cage-like structure and easy-recycling make ZnATMP-3Na achieve sustainable FO separation and superior to other draw solutes. This study provides inspiration for draw solute design from wastes and extends FO application to organophosphorus-containing wastewater remediation.
Collapse
Affiliation(s)
- Jiawen Zhang
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China
| | - Qingchun Ge
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China.
| |
Collapse
|
2
|
Zou Y, Ge Q. Smart Organic-Inorganic Polyoxomolybdates in Forward Osmosis for Antiviral-Drug Wastewater Treatment and Drug Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5872-5880. [PMID: 36976836 DOI: 10.1021/acs.est.3c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The demand to effectively treat medical wastewater has escalated with the much greater use of antiviral drugs since the COVID-19 pandemic. Forward osmosis (FO) has great potential in wastewater treatment only when appropriate draw solutes are available. Here, we synthesize a series of smart organic-inorganic polyoxomolybdates (POMs), namely, (NH4)6[Mo7O24], (PrNH3)6[Mo7O24], (iPrNH3)6[Mo7O24], and (BuNH3)6[Mo7O24], for FO to treat antiviral-drug wastewater. Influential factors of separation performance have been systematically studied by tailoring the structure, organic characteristics, and cation chain length of POMs. POMs at 0.4 M produce water fluxes ranging from 14.0 to 16.4 LMH with negligible solute losses, at least 116% higher than those of NaCl, NH4HCO3, and other draw solutes. (NH4)6[Mo7O24] creates a water flux of 11.2 LMH, increased by more than 200% compared to that of NaCl and NH4HCO3 in long-term antiviral-drug wastewater reclamation. Remarkably, the drugs treated with NH4HCO3 and NaCl are either contaminated or denatured, while those with (NH4)6[Mo7O24] remain intact. Moreover, these POMs are recovered by sunlight-assisted acidification owing to their light and pH dual sensitivity and reusability for FO. POMs prove their suitability as draw solutes and demonstrate their superiority over the commonly studied draw solutes in wastewater treatment.
Collapse
Affiliation(s)
- Yiting Zou
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China
| | - Qingchun Ge
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China
| |
Collapse
|
3
|
Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Chen R, Dong X, Ge Q. Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery manufacturing. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2137-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Shi Y, Liao X, Chen R, Ge Q. pH-Responsive Polyoxometalates that Achieve Efficient Wastewater Reclamation and Source Recovery via Forward Osmosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12664-12671. [PMID: 34494436 DOI: 10.1021/acs.est.1c04245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Forward osmosis (FO) has been increasingly used for water treatment. However, the lack of suitable draw solutes impedes its further development. Herein, we design pH-responsive polyoxometalates, that is, (NH4)6Mo7O24 and Na6Mo7O24, as draw solutes for simultaneous water reclamation and resource recovery from wastewater via FO. Both polyoxometalates have a cage-like configuration and release multiple ionic species in water. These characteristics allow them to generate high osmotic pressures to drive the FO separation efficiently with negligible reverse solute diffusion. (NH4)6Mo7O24 and Na6Mo7O24 at a dilute concentration (0.4 M) produce water fluxes of 16.4 LMH and 14.2 LMH, respectively, against DI water, outperforming the frequently used commercial NaCl and NH4HCO3 draw solutes, and other synthetic materials. With an average water flux of 10.0 LMH, (NH4)6Mo7O24 reclaims water from the simulated glutathione-containing wastewater more efficiently than Na6Mo7O24 (9.1 LMH), NaCl (3.3 LMH), and NH4HCO3 (5.6 LMH). The final glutathione treated with (NH4)6Mo7O24 and Na6Mo7O24 remains intact but that treated with NaCl and NH4HCO3 is either denatured or contaminated owing to their severe leakage in FO. Remarkably, both polyoxometalates are readily recycled by pH regulation and reused for FO. Polyoxometalate is thus proven to be an appropriate candidate for FO separation in wastewater reclamation and resource recovery.
Collapse
Affiliation(s)
- Yiru Shi
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350116, China
| | - Xialu Liao
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350116, China
| | - Rongzhen Chen
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350116, China
| | - Qingchun Ge
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350116, China
| |
Collapse
|
6
|
Guo J, Yang Q, Meng QW, Lau CH, Ge Q. Membrane Surface Functionalization with Imidazole Derivatives to Benefit Dye Removal and Fouling Resistance in Forward Osmosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6710-6719. [PMID: 33512147 DOI: 10.1021/acsami.0c22685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water contaminated with low concentrations of pollutants is more difficult to clean up than that with high pollutant content levels. Membrane separation provides a solution for removing low pollutant content from water. However, membranes are prone to fouling, losing separation performances over time. Here we synthesized neutral (IM-NH2) and positively charged (IL-NH2) imidazole derivatives to chemically functionalize membranes. With distinct properties, these imidazole grafts could tailor membrane physicochemical properties and structures to benefit forward osmosis (FO) processes for the removal of 20-100 ppm of Safranin O dye-a common dye employed in the textile industry. The water fluxes produced by IM-NH2- and IL-NH2-modified membranes increased by 67% and 122%, respectively, with DI water as the feed compared to that with the nascent membrane. A 39% flux increment with complete dye retention (∼100%) was achieved for the IL-NH2-modified membrane against 100 ppm of Safranin O dye. Regardless of the dye concentration, the IL-NH2-modified membrane exhibited steadily higher permeation performance than the original membrane in long-term experiments. Reproducible experimental results were obtained with the IL-NH2-modified membrane after cleaning with DI water, demonstrating the good antifouling properties and renewability of the newly developed membrane.
Collapse
Affiliation(s)
- Jie Guo
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Qiaoli Yang
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Qing-Wei Meng
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Robert Stevenson Road, The King's Buildings, Edinburgh EH9 3FB, Scotland, U.K
| | - Qingchun Ge
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| |
Collapse
|
7
|
Mahto A, Aruchamy K, Meena R, Kamali M, Nataraj SK, Aminabhavi TM. Forward osmosis for industrial effluents treatment – sustainability considerations. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Toward tailoring of a new draw solute for forward osmosis process: Branched poly (deep eutectic solvent)-decorated magnetic nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Suzaimi ND, Goh PS, Ismail AF, Mamah SC, Malek NANN, Lim JW, Wong KC, Hilal N. Strategies in Forward Osmosis Membrane Substrate Fabrication and Modification: A Review. MEMBRANES 2020; 10:E332. [PMID: 33171847 PMCID: PMC7695145 DOI: 10.3390/membranes10110332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/13/2023]
Abstract
Forward osmosis (FO) has been recognized as the preferred alternative membrane-based separation technology for conventional water treatment technologies due to its high energy efficiency and promising separation performances. FO has been widely explored in the fields of wastewater treatment, desalination, food industry and bio-products, and energy generation. The substrate of the typically used FO thin film composite membranes serves as a support for selective layer formation and can significantly affect the structural and physicochemical properties of the resultant selective layer. This signifies the importance of substrate exploration to fine-tune proper fabrication and modification in obtaining optimized substrate structure with regards to thickness, tortuosity, and porosity on the two sides. The ultimate goal of substrate modification is to obtain a thin and highly selective membrane with enhanced hydrophilicity, antifouling propensity, as well as long duration stability. This review focuses on the various strategies used for FO membrane substrate fabrication and modification. An overview of FO membranes is first presented. The extant strategies applied in FO membrane substrate fabrications and modifications in addition to efforts made to mitigate membrane fouling are extensively reviewed. Lastly, the future perspective regarding the strategies on different FO substrate layers in water treatment are highlighted.
Collapse
Affiliation(s)
- Nur Diyana Suzaimi
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Stanley Chinedu Mamah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
- Department of Chemical Engineering, Alex Ekwueme Federal University, Ebonyi State 84001, Nigeria
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia;
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Kar Chun Wong
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|