1
|
Shi S, Han Y, Feng J, Shi J, Liu X, Fu B, Wang J, Zhang W, Duan J. Microenvironment-triggered cascade metal-polyphenolic nanozyme for ROS/NO synergistic hyperglycemic wound healing. Redox Biol 2024; 73:103217. [PMID: 38820984 PMCID: PMC11177078 DOI: 10.1016/j.redox.2024.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Wound infection of hyperglycemic patient often has extended healing period and increased probability due to the high glucose level. However, achieving precise and safe therapy of the hyperglycemic wound with specific wound microenvironment (WME) remains a major challenge. Herein, a WME-activated smart L-Arg/GOx@TA-Fe (LGTF) nanozymatic system composed of generally recognized as safe (GRAS) compound is engineered. The nanozymatic system combining metal-polyphenol nanozyme (tannic acid-Fe3+, TA-Fe) and natural enzyme (glucose oxidase, GOx) can consume the high-concentration glucose, generating reactive oxygen species (ROS) and nitric oxide (NO) in situ to synergistically disinfect hyperglycemia wound. In addition, glucose consumption and gluconic acid generation can lower glucose level to promote wound healing and reduce the pH of WME to enhance the catalytic activities of the LGTF nanozymatic system. Thereby, low-dose LGTF can perform remarkable synergistic disinfection and healing effect towards hyperglycemic wound. The superior biosafety, high catalytic antibacterial and beneficial WME regulating capacity demonstrate this benign GRAS nanozymatic system is a promising therapeutic agent for hyperglycemic wound.
Collapse
Affiliation(s)
- Shuo Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaru Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jianxing Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingru Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoling Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Bangfeng Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jinyou Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Zhu Y, Li Y, Zhou X, Li H, Guo M, Zhang P. Glucose microenvironment sensitive degradation of arginine modified calcium sulfate reinforced poly(lactide- co-glycolide) composite scaffolds. J Mater Chem B 2024; 12:508-524. [PMID: 38108579 DOI: 10.1039/d3tb01595e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Poly(lactide-co-glycolide) (PLGA) and calcium sulfate composites are promising biodegradable biomaterials but are still challenging to use in people with high levels of blood glucose or diabetes. To date, the influence of glucose on their degradation has not yet been elucidated and thus calls for more research attention. Herein, a novel calcium sulfate whisker with L-arginine was used to effectively tune its crystal morphology and was employed as a reinforced phase to construct the PLGA-based composite scaffolds (ArgCSH/PLGA) with a sleeve porous structure. ArgCSH/PLGA showed excellent elastic modulus and strength in the compression and bending models. Moreover, an in vitro immersion test showed that ArgCSH/PLGA possessed degradation and redeposition behaviors sensitive to glucose concentration, and the adsorbed Arg played a crucial role in the degradation process. The subsequent cell functional evaluation showed that ArgCSH could effectively protect cells from damage caused by AGEs and promote osteogenic differentiation. The corresponding degradation products of ArgCSH/PLGA displayed the ability to regulate osteoblast bone differentiation and accelerate matrix mineralization. These findings provide new insights into the interaction between biomaterials and the physiological environment, which may be useful in expanding the targeted choice of efficient bone graft biodegradable materials for diabetic osteoporosis.
Collapse
Affiliation(s)
- Yongzhan Zhu
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, P. R. China.
| | - Yinghao Li
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, P. R. China.
| | - Xiaosong Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Haoxuan Li
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N. 126 Xiantai Street, Changchun 130033, Jilin, P. R. China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Zhou Z, Lu TD, Sun SP, Wang Q. Roles and gains of coordination chemistry in nanofiltration membrane: A review. CHEMOSPHERE 2023; 318:137930. [PMID: 36693478 DOI: 10.1016/j.chemosphere.2023.137930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
The nanofiltration (NF) membranes with the specific separation accuracy for molecules with the size of 0.5-2 nm have been applied in various industries. However, the traditional polymeric NF membranes still face problems like the trade-off effect, organic solvent consumption, and weak durability in harsh conditions. The participation of coordination action or metal-organic coordination compounds (MOCs) brings the membrane with uniform pores, better antifouling properties, and high hydrophilicity. Some of the aqueous-phase reactions also help to introduce a green fabrication process to NF membranes. This review critically summarizes the recent research progress in coordination chemistry relevant NF membranes. The participation of coordination chemistry was classified by the various functions in NF membranes like additives, interlayers, selective layers, coating layers, and cross-linkers. Then, the effect and mechanism of the coordination chemistry on the performance of NF membranes are discussed in depth. Perspectives are given for the further promotion that coordination chemistry can make in NF processes. This review also provides comprehensive insight and constructive guidance on high-performance NF membranes with coordination chemistry.
Collapse
Affiliation(s)
- Zhengzhong Zhou
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Tian-Dan Lu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qian Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
4
|
Lai YR, Lee SL, Liou YK, Lin YF, Tung KL. Aquaporin-inspired thin–film composite nanofiltration ceramic hollow fiber with the modification of arginine. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Zeng H, Guo J, Zhang Y, Xing D, Yang F, Huang J, Huang S, Shao L. Green glycerol tailored composite membranes with boosted nanofiltration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Wang K, Wang S, Gu K, Yan W, Zhou Y, Gao C. Ultra-low pressure PES ultrafiltration membrane with high-flux and enhanced anti-oil-fouling properties prepared via in-situ polycondensation of polyamic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156661. [PMID: 35700784 DOI: 10.1016/j.scitotenv.2022.156661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Polyamic acid (PAA) is a flexible polymer and has abundant valuable hydrophilic groups. Herein, we developed an ultra-low pressure ultrafiltration (UF) membrane by integrating PAA into the polyethersulfone (PES) matrix via the "in-situ polycondensation" method. PAA was well compatible with PES and distributed uniformly in the membrane. The introduction of PAA improved membrane hydrophilicity. Meanwhile, the membrane pore structures were also refined. The membrane exhibited an excellent permeability under ultra-low pressure due to its improvement of hydrophilicity and pore structures. Under 0.3 bar, compare with the water flux of PES membrane, PES/PAA membrane improved nearly 2 times (571.05 L/(m2·h)), with a high BSA rejection (≥90%). Even under a lower pressure, 0.1 bar, >300 L/(m2·h) still can be achieved. Interestingly, the membrane we developed could maintain a high performance after drying, and then is very suitable for dry preservation. PES/PAA membrane showed a high oil removal (≥92%) and could remove oil from water effectively. Besides, the membrane exhibited excellent anti-oil-fouling properties. The flux recovery rate of PES/PAA (70.0%) far exceeds that of PES (37.9%) after three filtration and cleaning cycles. The membrane we developed is very valuable in oily wastewater treatment.
Collapse
Affiliation(s)
- Kaizhen Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuhao Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kaifeng Gu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wentao Yan
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yong Zhou
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Congjie Gao
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
7
|
Ren L, Chen J, Lu Q, Han J, Liang J, Wu H. Cucurbit[n]uril-rotaxanes functionalized membranes with heterogeneous channel and regenerable surface for efficient and sustainable nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Borrego-Sánchez A, Gutiérrez-Ariza C, Sainz-Díaz CI, Cartwright JHE. The Effect of the Presence of Amino Acids on the Precipitation of Inorganic Chemical-Garden Membranes: Biomineralization at the Origin of Life. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10538-10547. [PMID: 35974697 PMCID: PMC9434990 DOI: 10.1021/acs.langmuir.2c01345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Indexed: 06/07/2023]
Abstract
If life developed in hydrothermal vents, it would have been within mineral membranes. The first proto-cells must have evolved to manipulate the mineral membranes that formed their compartments in order to control their metabolism. There must have occurred a biological takeover of the self-assembled mineral structures of the vents, with the incorporation of proto-biological molecules within the mineral membranes to alter their properties for life's purposes. Here, we study a laboratory analogue of this process: chemical-garden precipitation of the amino acids arginine and tryptophan with the metal salt iron chloride and sodium silicate. We produced these chemical gardens using different methodologies in order to determine the dependence of the morphology and chemistry on the growth conditions, as well as the effect of the amino acids on the formation of the iron-silicate chemical garden. We compared the effects of having amino acids initially within the forming chemical garden, corresponding to the internal zones of hydrothermal vents, or else outside, corresponding to the surrounding ocean. The characterization of the formed chemical gardens using X-ray diffraction, Fourier transform infrared spectroscopy, elemental analysis, and scanning electron microscopy demonstrates the presence of amino acids in these structures. The growth method in which the amino acid is initially in the tablet with the iron salt is that which generated chemical gardens with more amino acids in their structures.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto
Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Armilla, 18100 Granada Spain
- Department
of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Carlos Gutiérrez-Ariza
- Instituto
Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Armilla, 18100 Granada Spain
| | - C. Ignacio Sainz-Díaz
- Instituto
Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Armilla, 18100 Granada Spain
| | - Julyan H. E. Cartwright
- Instituto
Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Armilla, 18100 Granada Spain
- Instituto
Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
10
|
Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
In-situ fabricated covalent organic frameworks-polyamide hybrid membrane for highly efficient molecular separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Luo X, Feng S, Zhang Z, Liu L, Wu L, Zhang C. Fabrication of nanofiltration membranes via covalent layer-by-layer self-assembly for charged organic pollutants treatment. JOURNAL OF MATERIALS SCIENCE 2022; 57:9002-9017. [DOI: 10.1007/s10853-022-07218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/09/2022] [Indexed: 01/15/2025]
|
13
|
Zhang X, Zhao M, Yu H, Wang J, Sun W, Li Q, Cao X, Zhang P. Robust In Situ Fouling Control toward Thin-Film Composite Reverse Osmosis Membrane via One-Step Deposition of a Ternary Homogeneous Metal-Organic Hybrid Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7208-7220. [PMID: 35089006 DOI: 10.1021/acsami.1c19931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane fouling is one of the persistent headaches for water desalination because of the significant detriment to membrane performance and operating cost control. It is a great challenge to overcome such crisis in a facile and robust manner. This work was dedicated to customizing an antifouling thin-film composite (TFC) reverse osmosis (RO) membrane with a polydopamine (PDA)/β-alanine (βAla)/Cu2+ ternary homogeneous metal-organic hybrid coating. The metal ions were evenly distributed in a continuous organic network via polydentate coordination. The incorporation of βAla enabled a substantial promotion of the Cu2+ loading capacity on the membrane surface. The involved one-step codeposition protocol made the surface engineering practically accessible. The deposition time was optimized to afford an uncompromising permselectivity of the membrane. This novel trinity was a smart blend of anti-adhesive and bactericidal factors, and each component in the all-in-one layer performed its own function. The hydrophilic PDA/βAla phase induced weak deposition propensity of organic foulant and bacteria onto the modified membrane, as elucidated by water flux variation, foulants adhesion profile, and interfacial interaction energy. Meanwhile, the Cu2+-loaded surface strongly inactivated the attached bacteria to further alleviate biofouling. Excellent sustainability and stability implied the reliable performance of such trinity-coated membrane in practical service. Given the simplicity and robustness, this work opened a promising avenue for in situ fouling control of TFC RO membranes during water desalination.
Collapse
Affiliation(s)
- Xiaotai Zhang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Man Zhao
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Hui Yu
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Jian Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Wei Sun
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Qiang Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xingzhong Cao
- Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Long M, Yang C, You X, Zhang R, Yuan J, Guan J, Zhang S, Wu H, Khan NA, Kasher R, Jiang Z. Electrostatic enhanced surface segregation approach to self-cleaning and antifouling membranes for efficient molecular separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Guo Z, Zhang K, Guan H, Liu M, Yu S, Gao C. Improved separation efficiency of polyamide-based composite nanofiltration membrane by surface modification using 3-aminopropyltriethoxysilane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Huang BQ, Tang YJ, Zeng ZX, Xue SM, Li SQ, Wang YR, Li EC, Tang CY, Xu ZL. Enhancing nanofiltration performance for antibiotics/NaCl separation via water activation before microwave heating. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Kotobuki M, Gu Q, Zhang L, Wang J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021; 26:3331. [PMID: 34206052 PMCID: PMC8198361 DOI: 10.3390/molecules26113331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.
Collapse
Affiliation(s)
| | | | | | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; (M.K.); (Q.G.); (L.Z.)
| |
Collapse
|
19
|
Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes. iScience 2021; 24:102369. [PMID: 33898951 PMCID: PMC8059057 DOI: 10.1016/j.isci.2021.102369] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 01/31/2023] Open
Abstract
Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. Electrostatic-modulated interfacial polymerization is proposed for the first time Electrostatic attraction regulates the spatial-temporal distribution of amine monomers Monomer regulation leads to reduced thickness and enhanced cross-linking of membrane Ultrathin and highly cross-linked polyamide membrane displays superior permselectivity
Collapse
|
20
|
Compactness-tailored hollow fiber loose nanofiltration separation layers based on “chemical crosslinking and metal ion coordination” for selective dye separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Developing composite nanofiltration membranes with highly stable antifouling property based on hydrophilic roughness. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Ren L, Chen J, Lu Q, Han J, Wu H. Antifouling Nanofiltration Membrane Fabrication via Surface Assembling Light-Responsive and Regenerable Functional Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52050-52058. [PMID: 33156605 DOI: 10.1021/acsami.0c16858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane fouling, caused by aggregation of organics and microorganisms from filtrate on the membrane surface, seriously reduces the service life of a nanofiltration (NF) membrane. Developing facile and renewable antifouling modification methods without sacrificing separation properties of the membrane remain an imperative requirement. Herein, a thin-film composite (TFC) NF membrane with a light-responsive and regenerable functional layer (P-TFC) was fabricated via host-guest interactions between the azobenzene (guest) labeled functional polymers and the β-cyclodextrin (host) bonded membrane surface (H-TFC). The P-TFC-3 not only showed outstanding antifouling ability and high flux recovery ratio (FRR > 90% at the fourth antiadhesive test) but also exhibited enhanced water permeability (17.9 L m-2 h-1 bar-1) and high selectivity (αMgSO4NaCl = 33.4 and fast antibiotics enrichment capacity) compared with the pristine membrane. Furthermore, when the functional layer was contaminated, it can be removed by ultraviolet light irradiation and a new functional layer can be rebuilt by adding fresh azobenzene labeled functional polymers. After several regeneration processes, the membranes still showed constant separation properties and high flux recovery ability (FRR > 90%). This work proposes an easy-to-assemble and regenerable surface modification strategy to endow TFC NF membranes with excellent fouling resistance and sustainable utilization ability while maintaining high separation properties.
Collapse
Affiliation(s)
- Liang Ren
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Qing Lu
- Tianjin Bokelin Medical Packaging Technology Co., Ltd., Tasly Group, Tianjin 300410, China
| | - Jian Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Meng Y, Shu L, Xie LH, Zhao M, Liu T, Li JR. High performance nanofiltration in BUT-8(A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|