1
|
Lair L, Ouimet JA, Dougher M, Boudouris BW, Dowling AW, Phillip WA. Critical Mineral Separations: Opportunities for Membrane Materials and Processes to Advance Sustainable Economies and Secure Supplies. Annu Rev Chem Biomol Eng 2024; 15:243-266. [PMID: 38663030 DOI: 10.1146/annurev-chembioeng-100722-114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sustainable energy solutions and electrification are driving increased demand for critical minerals. Unfortunately, current mineral processing techniques are resource intensive, use large quantities of hazardous chemicals, and occur at centralized facilities to realize economies of scale. These aspects of existing technologies are at odds with the sustainability goals driving increased demand for critical minerals. Here, we argue that the small footprint and modular nature of membrane technologies position them well to address declining concentrations in ores and brines, the variable feed concentrations encountered in recycling, and the environmental issues associated with current separation processes; thus, membrane technologies provide new sustainable pathways to strengthening resilient critical mineral supply chains. The success of creating circular economies hinges on overcoming diverse barriers across the molecular to infrastructure scales. As such, solving these challenges requires the convergence of research across disciplines rather than isolated innovations.
Collapse
Affiliation(s)
- Laurianne Lair
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Jonathan Aubuchon Ouimet
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Molly Dougher
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Bryan W Boudouris
- 2Charles D. Davidson School of Chemical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | - Alexander W Dowling
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - William A Phillip
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| |
Collapse
|
2
|
Dischinger S, Miller DJ, Vermaas DA, Kingsbury RS. Unifying the Conversation: Membrane Separation Performance in Energy, Water, and Industrial Applications. ACS ES&T ENGINEERING 2024; 4:277-289. [PMID: 38357245 PMCID: PMC10862477 DOI: 10.1021/acsestengg.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Dense polymer membranes enable a diverse range of separations and clean energy technologies, including gas separation, water treatment, and renewable fuel production or conversion. The transport of small molecular and ionic solutes in the majority of these membranes is described by the same solution-diffusion mechanism, yet a comparison of membrane separation performance across applications is rare. A better understanding of how structure-property relationships and driving forces compare among applications would drive innovation in membrane development by identifying opportunities for cross-disciplinary knowledge transfer. Here, we aim to inspire such cross-pollination by evaluating the selectivity and electrochemical driving forces for 29 separations across nine different applications using a common framework grounded in the physicochemical characteristics of the permeating and rejected solutes. Our analysis shows that highly selective membranes usually exhibit high solute rejection, rather than fast solute permeation, and often exploit contrasts in the size and charge of solutes rather than a nonelectrostatic chemical property, polarizability. We also highlight the power of selective driving forces (e.g., the fact that applied electric potential acts on charged solutes but not on neutral ones) to enable effective separation processes, even when the membrane itself has poor selectivity. We conclude by proposing several research opportunities that are likely to impact multiple areas of membrane science. The high-level perspective of membrane separation across fields presented herein aims to promote cross-pollination and innovation by enabling comparisons of solute transport and driving forces among membrane separation applications.
Collapse
Affiliation(s)
- Sarah
M. Dischinger
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Daniel J. Miller
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - David A. Vermaas
- Department
of Chemical Engineering, Delft University
of Technology, 2629HZ Delft, The
Netherlands
| | - Ryan S. Kingsbury
- Energy
Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering and the Andlinger Center for
Energy and the Environment, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
3
|
Wang R, Lin S. Membrane Design Principles for Ion-Selective Electrodialysis: An Analysis for Li/Mg Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38324772 PMCID: PMC10882969 DOI: 10.1021/acs.est.3c08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Selective electrodialysis (ED) is a promising membrane-based process to separate Li+ from Mg2+, which is the most critical step for Li extraction from brine lakes. This study theoretically compares the ED-based Li/Mg separation performance of different monovalent selective cation exchange membranes (CEMs) and nanofiltration (NF) membranes at the coupon scale using a unified mass transport model, i.e., a solution-friction model. We demonstrated that monovalent selective CEMs with a dense surface thin film like a polyamide film are more effective in enhancing the Li/Mg separation performance than those with a loose but highly charged thin film. Polyamide film-coated CEMs when used in ED have a performance similar to that of polyamide-based NF membranes when used in NF. NF membranes, when expected to replace monovalent selective CEMs in ED for Li/Mg separation, will require a thin support layer with low tortuosity and high porosity to reduce the internal concentration polarization. The coupon-scale performance analysis and comparison provide new insights into the design of composite membranes used for ED-based selective ion-ion separation.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
4
|
Foo ZH, Thomas JB, Heath SM, Garcia JA, Lienhard JH. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14747-14759. [PMID: 37721998 DOI: 10.1021/acs.est.3c04472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Evaporative technology for lithium mining from salt-lakes exacerbates freshwater scarcity and wetland destruction, and suffers from protracted production cycles. Electrodialysis (ED) offers an environmentally benign alternative for continuous lithium extraction and is amenable to renewable energy usage. Salt-lake brines, however, are hypersaline multicomponent mixtures, and the impact of the complex brine-membrane interactions remains poorly understood. Here, we quantify the influence of the solution composition, salinity, and acidity on the counterion selectivity and thermodynamic efficiency of electrodialysis, leveraging 1250 original measurements with salt-lake brines that span four feed salinities, three pH levels, and five current densities. Our experiments reveal that commonly used binary cation solutions, which neglect Na+ and K+ transport, may overestimate the Li+/Mg2+ selectivity by 250% and underpredict the specific energy consumption (SEC) by a factor of 54.8. As a result of the hypersaline conditions, exposure to salt-lake brine weakens the efficacy of Donnan exclusion, amplifying Mg2+ leakage. Higher current densities enhance the Donnan potential across the solution-membrane interface and ameliorate the selectivity degradation with hypersaline brines. However, a steep trade-off between counterion selectivity and thermodynamic efficiency governs ED's performance: a 6.25 times enhancement in Li+/Mg2+ selectivity is accompanied by a 71.6% increase in the SEC. Lastly, our analysis suggests that an industrial-scale ED module can meet existing salt-lake production capacities, while being powered by a photovoltaic farm that utilizes <1% of the salt-flat area.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John B Thomas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel M Heath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jason A Garcia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Romero V, Gelde L, Benavente J. Electrochemical Characterization of Charged Membranes from Different Materials and Structures via Membrane Potential Analysis. MEMBRANES 2023; 13:739. [PMID: 37623800 PMCID: PMC10456455 DOI: 10.3390/membranes13080739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Electrochemical characterization of positively and negatively charged membranes is performed by analyzing membrane potential values on the basis of the Teorell-Meyer-Sievers (TMS) model. This analysis allows the separate estimation of Donnan (interfacial effects) and diffusion (differences in ions transport through the membrane) contributions, and it permits the evaluation of the membrane's effective fixed charge concentration and the transport number of the ions in the membrane. Typical ion-exchange commercial membranes (AMX, Ionics or Nafion) are analyzed, though other experimental and commercial membranes, which are derived from different materials and have diverse structures (dense, swollen or nanoporous structures), are also considered. Moreover, for some membranes, changes associated with different modifications and other effects (concentration gradient or level, solution stirring, etc.) are also analyzed.
Collapse
Affiliation(s)
| | | | - Juana Benavente
- Departamento de Física Aplicada I, Facultad de Ciencia, Universidad de Málaga, 29071 Málaga, Spain; (V.R.); (L.G.)
| |
Collapse
|
6
|
Du Y, Pramanik BK, Zhang Y, Jegatheesan V. Resource recovery from RO concentrate using nanofiltration: Impact of active layer thickness on performance. ENVIRONMENTAL RESEARCH 2023; 231:116265. [PMID: 37263466 DOI: 10.1016/j.envres.2023.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
Modelling the removal of monovalent and divalent ions from seawater via nanofiltration is crucial for pre-treatment in seawater reverse osmosis systems. Effective separation of divalent ions through nanofiltration and allowing the permeate containing only monovalent ions to pass through the reverse osmosis system produces pure NaCl salt from the concentrate. However, the Donnan steric pore model and dielectric exclusion assume a uniformly distributed cylinder pore morphology, which is not representative of the actual membrane structure. This study analyzed the impact of membrane thickness on neutral solute removal and investigated the effect of two different methods for calculating the Peclet number on rejection rates of monovalent and divalent salts. Results show that membrane thickness has a significant effect on rejection rates, particularly for uncharged solutes in the range of 0.5-0.7 solute radius to membrane pore size ratio. Operating pressures above 10 bar favour the use of effective active layer thickness over the membrane pore size to calculate the Peclet number. At low pressures, using the effective active layer can lead to overestimation of monovalent salt rejection and underestimation of divalent salt rejection. This study highlights the importance of appropriate Peclet number calculation methods based on applied pressure when modelling membrane separation performance.
Collapse
Affiliation(s)
- Yuchen Du
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Biplob Kumar Pramanik
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Engineering Research Centre for Chemical Pollution Control and Resource Recovery, Shandong Provincial Education Department, Qingdao, 266042, China.
| | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
7
|
Foo ZH, Rehman D, Bouma AT, Monsalvo S, Lienhard JH. Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6320-6330. [PMID: 37027336 DOI: 10.1021/acs.est.2c08584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Membranes offer a scalable and cost-effective approach to ion separations for lithium recovery. In the case of salt-lake brines, however, the high feed salinity and low pH of the post-treated feed have an uncertain impact on nanofiltration's selectivity. Here, we adopt experimental and computational approaches to analyze the effect of pH and feed salinity and elucidate key selectivity mechanisms. Our data set comprises over 750 original ion rejection measurements, spanning five salinities and two pH levels, collected using brine solutions that model three salt-lake compositions. Our results demonstrate that the Li+/Mg2+ selectivity of polyamide membranes can be enhanced by 13 times with acid-pretreated feed solutions. This selectivity enhancement is attributed to the amplified Donnan potential from the ionization of carboxyl and amino moieties under low solution pH. As feed salinities increase from 10 to 250 g L-1, the Li+/Mg2+ selectivity decreases by ∼43%, a consequence of weakening exclusion mechanisms. Further, our analysis accentuates the importance of measuring separation factors using representative solution compositions to replicate the ion-transport behaviors with salt-lake brine. Consequently, our results reveal that predictions of ion rejection and Li+/Mg2+ separation factors can be improved by up to 80% when feed solutions with the appropriate Cl-/SO42- molar ratios are used.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danyal Rehman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew T Bouma
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sebastian Monsalvo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Lim YJ, Lai GS, Zhao Y, Ma Y, Torres J, Wang R. A scalable method to fabricate high-performance biomimetic membranes for seawater desalination: Incorporating pillar[5]arene water nanochannels into the polyamide selective layer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Yadav S, Ibrar I, Altaee A, Samal AK, Karbassiyazdi E, Zhou J, Bartocci P. High-Performance mild annealed CNT/GO-PVA composite membrane for brackish water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Zhu H, Hu B. Dielectric Properties of Aqueous Electrolyte Solutions Confined in Silica Nanopore: Molecular Simulation vs. Continuum-Based Models. MEMBRANES 2022; 12:220. [PMID: 35207141 PMCID: PMC8880171 DOI: 10.3390/membranes12020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023]
Abstract
Dielectric behavior of electrolyte aqueous solutions with various concentrations in a cylindrical nanopore of MCM 41 silica has been investigated. The effect of confinement is investigated by using isothermal-isosurface-isobaric statistical ensemble, which has proved to be an effective alternative to the Grand Canonical Monte Carlo (GCMC) simulation method. Several single-salt solutions have been considered (e.g., NaCl, NaI, BaCl2, MgCl2) in order to investigate the effect of ion polarizability, ion size, and ion charge. The effect of salt concentration has also been addressed by considering NaCl solutions at different concentrations (i.e., 0.1 mol/L, 0.5 mol/L, and 1 mol/L). The motivation in performing this integrated set of simulations is to provide deep insight into the dielectric exclusion in NF theory that plays a significant role in separation processes. It was shown that the dielectric constant increased when ions were added to water inside the nanopore (with respect to the dielectric constant of confined pure water) unlike what was obtained in the bulk phase and this phenomenon was even more pronounced for electrolytes with divalent ions (MgCl2 and BaCl2). Therefore, our simulations indicate opposite effects of ions on the dielectric constant of free (bulk) and nanoconfined aqueous solutions.
Collapse
Affiliation(s)
- Haochen Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Ministry of Education, 1239 Siping Rd., Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Ministry of Education, 1239 Siping Rd., Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
11
|
Anomalous dielectric behaviors of electrolyte solutions confined in graphene oxide nanochannels. Sci Rep 2021; 11:18689. [PMID: 34548592 PMCID: PMC8455572 DOI: 10.1038/s41598-021-98326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Dielectric behavior of salt aqueous solutions with various concentration in pristine and oxide graphene nanochannels has been investigated by means of molecular dynamic simulations. The motivation in performing this integrated set of simulations was to provide deep insight into the interaction between the size of the enclosure and the oxidation degree of the membrane sheets on the dielectric properties. It was shown that the dielectric permittivity of both aqueous and NaCl solution in confined phase exhibits an anisotropic behavior. The in-plane component decreases with the increase of the concentration of NaCl solution while an increase of the out-of-plane dielectric is observed and these out-of-plane components exhibit a non-monotonous trend and thus exist a critical concentration of NaCl solution with 0.2 mol/L and 0.4 mol/L for both pristine and oxide graphene nanochannels, respectively. This peculiar dielectric behavior results from the addition of ions that significantly perturb the hydrogen bonding network of the confined system, and hence leading to a fluctuation of dipolar of water molecules and dielectric permittivity.
Collapse
|
12
|
Saavedra A, Valdés H, Mahn A, Acosta O. Comparative Analysis of Conventional and Emerging Technologies for Seawater Desalination: Northern Chile as A Case Study. MEMBRANES 2021; 11:membranes11030180. [PMID: 33807870 PMCID: PMC7999931 DOI: 10.3390/membranes11030180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/04/2023]
Abstract
The aim of this work was to study different desalination technologies as alternatives to conventional reverse osmosis (RO) through a systematic literature review. An expert panel evaluated thermal and membrane processes considering their possible implementation at a pilot plant scale (100 m3/d of purified water) starting from seawater at 20 °C with an average salinity of 34,000 ppm. The desalination plant would be located in the Atacama Region (Chile), where the high solar radiation level justifies an off-grid installation using photovoltaic panels. We classified the collected information about conventional and emerging technologies for seawater desalination, and then an expert panel evaluated these technologies considering five categories: (1) technical characteristics, (2) scale-up potential, (3) temperature effect, (4) electrical supply options, and (5) economic viability. Further, the potential inclusion of graphene oxide and aquaporin-based biomimetic membranes in the desalinization processes was analyzed. The comparative analysis lets us conclude that nanomembranes represent a technically and economically competitive alternative versus RO membranes. Therefore, a profitable desalination process should consider nanomembranes, use of an energy recovery system, and mixed energy supply (non-conventional renewable energy + electrical network). This document presents an up-to-date overview of the impact of emerging technologies on desalinated quality water, process costs, productivity, renewable energy use, and separation efficiency.
Collapse
Affiliation(s)
- Aldo Saavedra
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile; (A.S.); (A.M.)
| | - Hugo Valdés
- Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule (UCM), Av. San Miguel 3605, Talca 3460000, Chile
- Correspondence: ; Tel.: +56-2-71203-438
| | - Andrea Mahn
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile; (A.S.); (A.M.)
| | - Orlando Acosta
- Gestionare Consultores, Carlos Antunez 2025 of. 608, Providencia 7500000, Chile;
| |
Collapse
|
13
|
Zhou X, Wang Z, Epsztein R, Zhan C, Li W, Fortner JD, Pham TA, Kim JH, Elimelech M. Intrapore energy barriers govern ion transport and selectivity of desalination membranes. SCIENCE ADVANCES 2020; 6:6/48/eabd9045. [PMID: 33239305 PMCID: PMC7688318 DOI: 10.1126/sciadv.abd9045] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/09/2020] [Indexed: 05/03/2023]
Abstract
State-of-the-art desalination membranes exhibit high water-salt selectivity, but their ability to discriminate between ions is limited. Elucidating the fundamental mechanisms underlying ion transport and selectivity in subnanometer pores is therefore imperative for the development of ion-selective membranes. Here, we compare the overall energy barrier for salt transport and energy barriers for individual ion transport, showing that cations and anions traverse the membrane pore in an independent manner. Supported by density functional theory simulations, we demonstrate that electrostatic interactions between permeating counterion and fixed charges on the membrane substantially hinder intrapore diffusion. Furthermore, using quartz crystal microbalance, we break down the contributions of partitioning at the pore mouth and intrapore diffusion to the overall energy barrier for salt transport. Overall, our results indicate that intrapore diffusion governs salt transport through subnanometer pores due to ion-pore wall interactions, providing the scientific base for the design of membranes with high ion-ion selectivity.
Collapse
Affiliation(s)
- Xuechen Zhou
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Zhangxin Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Cheng Zhan
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Wenlu Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
14
|
Marecka-Migacz A, Mitkowski PT, Nędzarek A, Różański J, Szaferski W. Effect of pH on Total Volume Membrane Charge Density in the Nanofiltration of Aqueous Solutions of Nitrate Salts of Heavy Metals. MEMBRANES 2020; 10:E235. [PMID: 32937943 PMCID: PMC7558355 DOI: 10.3390/membranes10090235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
The separation efficiencies of aqueous solutions containing nitric salts of Zn, Cu, Fe or Pb at various pH in process of nanofiltration have been investigated experimentally. These results were used to obtain the total volume membrane charge densities, through mathematical modelling based on the Donnan-Steric partitioning Model. The experimentally obtained retention values of individual heavy metal ions varied between 36% (Zn2+ at pH = 2), 57% (Pb2+ at pH = 2), 80% (Fe3+ at pH = 9), and up to 97% (Cu2+ at pH = 9). The mathematical modelling allowed for fitting the total volume membrane charge density (Xd), which yielded values ranging from -451.90 to +900.16 mol/m3 for different non-symmetric ions. This study presents the application of nanofiltration (NF) modelling, including a consideration of each ion present in the NF system-even those originating from solutions used to adjust the pH values of the feed.
Collapse
Affiliation(s)
- Agata Marecka-Migacz
- Division of Chemical Engineering and Equipment, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznań, Poland; (A.M.-M.); (J.R.); (W.S.)
| | - Piotr Tomasz Mitkowski
- Division of Chemical Engineering and Equipment, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznań, Poland; (A.M.-M.); (J.R.); (W.S.)
| | - Arkadiusz Nędzarek
- Department of Aquatic Bioengineering and Aquaculture, West Pomeranian University of Technology in Szczecin, 71-550 Szczecin, Poland;
| | - Jacek Różański
- Division of Chemical Engineering and Equipment, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznań, Poland; (A.M.-M.); (J.R.); (W.S.)
| | - Waldemar Szaferski
- Division of Chemical Engineering and Equipment, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznań, Poland; (A.M.-M.); (J.R.); (W.S.)
| |
Collapse
|
15
|
Luo H, Agata WAS, Geise GM. Connecting the Ion Separation Factor to the Sorption and Diffusion Selectivity of Ion Exchange Membranes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02457] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongxi Luo
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| | - Wendy-Angela Saringi Agata
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| | - Geoffrey M. Geise
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| |
Collapse
|