1
|
Filimon A, Dobos AM, Onofrei MD, Serbezeanu D. Polyvinyl Alcohol-Based Membranes: A Review of Research Progress on Design and Predictive Modeling of Properties for Targeted Application. Polymers (Basel) 2025; 17:1016. [PMID: 40284281 PMCID: PMC12030392 DOI: 10.3390/polym17081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
This review provides a comprehensive evaluation of the current state of polyvinyl alcohol (PVA)-based membranes, emphasizing their significance in membrane technology for various applications. The analysis encompasses both experimental and theoretical research articles, with a focus on recent decades, aiming to elucidate the potential and limitations of different fabrication approaches, structure-property relationships, and their applicability in the real world. The review begins by examining the advanced polymeric materials and strategies employed in the design and processing of membranes with tailored properties. Fundamental principles of membrane processes are introduced, with a focus on general modeling approaches for describing the fluid transport through membranes. A key aspect of discussion is the distinction between the membrane performance and process performance. Additionally, an in-depth analysis of PVA membranes in various applications is presented, particularly in environmental fields (e.g., fuel cell, water treatment, air purification, and food packaging) and biomedical domains (e.g., drug delivery systems, wound healing, tissue engineering and regenerative medicine, hemodialysis and artificial organs, and ophthalmic and periodontal treatment). Special attention is given to the relationship between membranes' characteristics, such as material composition, structure, and processing parameters, and their overall performance, in terms of permeability, selectivity, and stability. Despite their promising properties, enhanced through innovative fabrication methods that expand their applicability, challenges remain in optimizing long-term stability, improving fouling resistance, and increasing process scalability. Therefore, further research is needed to develop novel modifications and composite structures that overcome these limitations and enhance the practical implementation of PVA-based membranes. By offering a systematic overview, this review aims to advance the understanding of PVA membrane fabrication, properties, and functionality, providing valuable insights for continued development and optimization in membrane technology.
Collapse
Affiliation(s)
- Anca Filimon
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.M.D.); (M.D.O.); (D.S.)
| | | | | | | |
Collapse
|
2
|
Asghari M, Sahari MA, Kia SJ, Tavakoli A, Barzegar M. Berberis integerrima bioactive molecules loaded in chitosan-based electrospun nanofibers for soybean oil oxidative protection. Int J Biol Macromol 2024; 268:131692. [PMID: 38702247 DOI: 10.1016/j.ijbiomac.2024.131692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Natural bioactive molecules such as phenolic acids and alkaloids play a crucial role in preserving the quality and safety of food products, particularly oils, by preventing oxidation. Berberis integerrima, a rich source of such antioxidants, has been explored in this study for its potential application in soybean oil preservation. Electrospun nanofibers, composed of polyvinyl alcohol and chitosan, were fabricated and loaded with an alcoholic extract of Berberis integerrima. The antioxidant activity of Berberis integerrima was evaluated, and the phenolic compounds contributing to its efficacy were identified and quantified. The physicochemical properties of the polyvinyl alcohol /chitosan/Berberis integerrima nanofibers, including morphology, crystallinity, functional groups, and thermal stability, were characterized. The results revealed that the polyvinyl alcohol/chitosan/Berberis integerrima nanofibers exhibited high antioxidant capacity and improved the stability of Berberis integerrima, indicating their potential as effective and biodegradable materials for food preservation. This study underscores the potential of harnessing natural antioxidants from Berberis integerrima in nanofibers to enhance the quality and safety of soybean oil.
Collapse
Affiliation(s)
- Mohsen Asghari
- Department of Food Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Sahari
- Department of Food Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Jalal Kia
- Department of Polymer Engineering and Color Technology, Amir Kabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Tavakoli
- Department of Food Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Barzegar
- Department of Food Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Zou D, Zhou Y, Yan W, Zhou Y, Gao C. Boric acid-loosened polyvinyl alcohol/glutaraldehyde membrane with high flux and selectivity for monovalent/divalent salt separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Acid-reinforced ionic cross-linking of sodium alginate/polyamidoamine dendrimer blended composite membranes for isopropanol dehydration through pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Yeang QW, Sulong AB, Tan SH. Electrospun carboxyl‐functionalised multi‐walled carbon nanotube/poly(vinyl alcohol) asymmetric pervaporation membrane: Application and modeling. J Appl Polym Sci 2022. [DOI: 10.1002/app.51953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian Wen Yeang
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia Seri Ampangan Malaysia
| | - Abu Bakar Sulong
- Faculty of Engineering and Built Environment, Department of Mechanical and Materials Engineering Universiti Kebangsaan Malaysia Bangi Selangor Malaysia
| | - Soon Huat Tan
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia Seri Ampangan Malaysia
| |
Collapse
|
6
|
Zhang S, Acharya DP, Tang X, Zheng H, Yang G, Ng D, Xie Z. Dual Functions of a Au@AgNP-Incorporated Nanocomposite Desalination Membrane with an Enhanced Antifouling Property and Fouling Detection Via Surface-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46202-46212. [PMID: 34528779 PMCID: PMC8485324 DOI: 10.1021/acsami.1c15948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 06/01/2023]
Abstract
Membrane fouling has remained a major challenge limiting the wide application of membrane technology because it reduces the efficiency and shortens the lifespan of the membrane, thus increasing the operation cost. Herein we report a novel dual-function nanocomposite membrane incorporating silver-coated gold nanoparticles (Au@AgNPs) into a sulfosuccinic acid (SSA) cross-linked poly(vinyl alcohol) (PVA) membrane for a pervaporation desalination. Compared with the control PVA membrane and PVA/SSA membrane, the Au@AgNPs/PVA/SSA membrane demonstrated a higher water flux and better salt rejection as well as an enhanced antifouling property. More importantly, Au@AgNPs provided an additional function enabling a foulant detection on the membrane surface via surface-enhanced Raman spectroscopy (SERS) as Au@AgNPs could amplify the Raman signals as an SERS substrate. Distinct SERS spectra given by a fouled membrane helped to distinguish different protein foulants from their characteristic fingerprint peaks. Their fouling tendency on the membrane was also revealed by comparing the SERS intensities of mixed foulants on the membrane surface. The Au@AgNPs/PVA/SSA nanocomposite membrane presented here demonstrated the possibility of a multifunction membrane to achieve both antifouling and fouling detection, which could potentially be used in water treatment.
Collapse
Affiliation(s)
- Shixin Zhang
- Key
laboratory of the three Gorges Reservoir Region’s Eco-Environment,
State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Durga P. Acharya
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Xiaomin Tang
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
- Chongqing
Key Laboratory of Catalysis & New Environmental Materials, College
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P. R.
China
| | - Huaili Zheng
- Key
laboratory of the three Gorges Reservoir Region’s Eco-Environment,
State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Guang Yang
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Derrick Ng
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Zongli Xie
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| |
Collapse
|
7
|
Chaudhari S, Cho K, Joo S, An B, Lee S, Yun S, Lee G, Park J, Shon M, Park Y. Layer-by-layer of graphene oxide-chitosan assembly on PVA membrane surface for the pervaporation separation of water-isopropanol mixtures. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0726-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang X, Liu ZP, Xu ZL, Cheng FY, Ma XH, Xu XR. Thin-film composite membranes fabricated directly on a large-porous ceramic support using poly (4-styrenesulfonic acid) as a scaffold for ethanol dehydration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
De Guzman MR, Ang MBMY, Yeh YL, Yang HL, Huang SH, Lee KR. Improved pervaporation efficiency of thin-film composite polyamide membranes fabricated through acetone-assisted interfacial polymerization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Yang G, Xie Z, Zhang S, Zheng H, Cai K, Cran M, Ng D, Wu C, Gray S. Functionalized Carbon Nanotube-Mediated Transport in Membranes Containing Fixed-Site Carriers for Fast Pervaporation Desalination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50918-50928. [PMID: 33108870 DOI: 10.1021/acsami.0c16934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Facilitated transport membranes (FTMs) comprising fixed carrier agents hold considerable potential for obtaining selective and fast separation of mixed molecules in either gas or liquid state. However, diffusion through the membrane is inevitably affected by the resistance from the polymer matrix, where the carrier is absent. Herein, a poly(vinyl alcohol) (PVA)-based separating layer combining the merits of fixed-site transport agents and inorganic nanofillers was developed to reduce the transport resistance. Carbon nanotubes (CNTs) with different degrees of oxidation were prepared and incorporated into the sulfonic acid (-SO3H)-modified PVA matrix. The resultant composite membrane consisting of a microporous polytetrafluoroethylene substrate and a thin PVA-based separating layer (∼700 nm thick) was subject to pervaporation desalination of sodium chloride solution (35,000 ppm) at 30 °C. The effect of -SO3H as a fixed transport agent in the PVA matrix was first investigated experimentally, showing an increase of water flux by 21.8% compared with a control membrane without the transport agent. Subsequently, the CNT-incorporated FTM exhibited good stability (50 h) and improvement in water transport, which was ∼161% of the control FTM (PVA with -SO3H) without loss of selectivity. Such high and stable performance achieved in the CNT-incorporated FTM originated from the construction of low-resistance transport pathways by CNTs between -SO3H groups as well as their uniform dispersion in the polymer matrix.
Collapse
Affiliation(s)
- Guang Yang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, Victoria 8001, Australia
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Shixin Zhang
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Kewei Cai
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Marlene Cran
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, Victoria 8001, Australia
| | - Derrick Ng
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Institute of Biological and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, Victoria 8001, Australia
| |
Collapse
|
11
|
Ultrathin poly (vinyl alcohol)/MXene nanofilm composite membrane with facile intrusion-free construction for pervaporative separations. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Yang G, Xie Z, Cran M, Wu C, Gray S. Dimensional Nanofillers in Mixed Matrix Membranes for Pervaporation Separations: A Review. MEMBRANES 2020; 10:E193. [PMID: 32825195 PMCID: PMC7559426 DOI: 10.3390/membranes10090193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Pervaporation (PV) has been an intriguing membrane technology for separating liquid mixtures since its commercialization in the 1980s. The design of highly permselective materials used in this respect has made significant improvements in separation properties, such as selectivity, permeability, and long-term stability. Mixed-matrix membranes (MMMs), featuring inorganic fillers dispersed in a polymer matrix to form an organic-inorganic hybrid, have opened up a new avenue to facilely obtain high-performance PV membranes. The combination of inorganic fillers in a polymer matrix endows high flexibility in designing the required separation properties of the membranes, in which various fillers provide specific functions correlated to the separation process. This review discusses recent advances in the use of nanofillers in PV MMMs categorized by dimensions including zero-, one-, two- and three-dimensional nanomaterials. Furthermore, the impact of the nanofillers on the polymer matrix is described to provide in-depth understanding of the structure-performance relationship. Finally, the applications of nanofillers in MMMs for PV separation are summarized.
Collapse
Affiliation(s)
- Guang Yang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (G.Y.); (M.C.)
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia
| | - Marlene Cran
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (G.Y.); (M.C.)
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Institute of Biological and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (G.Y.); (M.C.)
| |
Collapse
|
13
|
Abstract
Polymeric membrane technology is a constantly developing field in both the research and industrial sector, with many applications considered nowadays as mature such as desalination, wastewater treatment, and hemodialysis. A variety of polymers have been used for the development of porous membranes by implementing numerous approaches such as phase inversion, electrospinning, sintering, melt-spinning and cold-stretching, 3D printing, and others. Depending on the application, certain polymer characteristics such as solubility to non-toxic solvents, mechanical and thermal stability, non-toxicity, resistance to solvents, and separation capabilities are highly desired. Poly (vinyl alcohol) (PVA) is a polymer that combines the above-mentioned properties with great film forming capabilities, good chemical and mechanical stability, and tuned hydrophilicity, rendering it a prominent candidate for membrane preparation since the 1970s. Since then, great progress has been made both in preparation methods and possible unique applications. In this review, the main preparation methods and applications of porous PVA based membranes, along with introductory material are presented.
Collapse
|