1
|
Ge R, E T, Cheng Y, Wang Y, Yu J, Li Y, Yang S. NaH 2PO 4 synergizes with organic matter to stabilize chromium in tannery sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119843. [PMID: 38128209 DOI: 10.1016/j.jenvman.2023.119843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Heavy metal stabilization is an effective method to treat chromium in tannery sludge. Here we show that mainly investigated NaH2PO4 (MSP) and organic matter (OM) to stabilize chromium in tannery sludge. The experimental investigation revealed that the addition of montmorillonite (MMT) and MSP samples showed a significant increase in the percentage of reducible and oxidizable Cr in the former compared to the samples with the addition of MMT. This is attributed to the formation of Cr-O bond, which allows the MSP to undergo an inner-sphere complexation reaction with the metal oxide of Cr via ligand exchange. Significantly, the MSP moiety adsorbs on the surface of OM through monodentate, which increases the adsorption sites of OM for Cr6+ and promotes the reduction of Cr6+ to Cr3+. Moreover, PO43- reacts with Cr3+ to produce CrPO4 precipitation, thus reducing the free Cr3+ content. Finally, DFT calculations confirmed that a ternary system is formed between PO43-, OM, and Cr, and the binding energy is negative, which indicated that PO43- could co-stabilize Cr with OM.
Collapse
Affiliation(s)
- Ruijie Ge
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Ying Cheng
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., LTD, Jinzhou, 121013, Liaoning, China
| | - Jia Yu
- Environmental Protection Monitoring Station of Haining, Haining, 330481, Zhejiang, China
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai, 264005, Shandong, China.
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China.
| |
Collapse
|
2
|
Witt K, Kaczorowska MA, Bożejewicz D. Efficient, fast, simple, and eco-friendly methods for separation of toxic chromium(VI) ions based on ion exchangers and polymer materials impregnated with Cyphos IL 101, Cyphos IL 104, or D2EHPA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7977-7993. [PMID: 38177645 PMCID: PMC10821846 DOI: 10.1007/s11356-023-31648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
In this study, we present the results of the first comparison of the elimination of toxic Cr(VI) ions, which are hazardous contamination of the environment, from aqueous solutions using ion exchangers (IEs) and polymer materials (PMs) impregnated with D2EHPA or ionic liquids (Cyphos IL 101 and Cyphos IL 104). Sorption of Cr(VI) ions and desorption from the formulated sorption materials were carried out. In comparison, classical solvent extraction was accomplished. Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and atomic force microscopy (AFM) have been used for characterization of the structure of developed IEs and PMs. The highest efficiency of adsorption of Cr(VI) ions was obtained using PMs with ionic liquids (>82%). Desorption from these materials were also very efficient (>75%). On the contrary, the application of IEs allowed for obtaining the best results of both, sorption and desorption processes when using D2EHPA (75% and 72%, respectively). The application of PMs and IEs is part of the green chemistry, and the conducted elimination of chromium(VI) ions using developed materials allows for the conclusion that they can potentially be used on a larger scale, e.g., for the treatment of industrial wastewater rich in Cr(VI) ions.
Collapse
Affiliation(s)
- Katarzyna Witt
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85326, Bydgoszcz, PL, Poland.
| | - Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85326, Bydgoszcz, PL, Poland
| | - Daria Bożejewicz
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85326, Bydgoszcz, PL, Poland
| |
Collapse
|
3
|
Wang Y, Wang P, Xie H, Tan M, Wang L, Liu Y, Zhang Y. Mechanistic investigation of intensified separation of molybdenum(VI) and vanadium(V) using polymer inclusion membrane electrodialysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131671. [PMID: 37236110 DOI: 10.1016/j.jhazmat.2023.131671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
The main challenge in separating molybdenum(VI) and vanadium(V) which have similar properties results in great difficulties in the green recycling of hazardous spent catalysts. Here, selective facilitating transport and stripping are integrated into the polymer inclusion membrane electrodialysis process (PIMED) to separate Mo(VI) and V(V) to overcome the complicated co-extraction and stepwise-stripping in conventional solvent extraction. The influences of various parameters, the selective transport mechanism, and respective activation parameters were systematically investigated. Results revealed that the affinity of the Aliquat 36 as the carrier and PVDF-HFP as the base polymer of PIM towards Mo(VI) is stronger than that of V(V), while the strong interaction between Mo(VI) and carrier caused low migration through the membrane. By the combination of adjusting and controlling the electric density and strip acidity, the interaction was destroyed and the transport was facilitated. After optimization, stripping efficiencies of Mo(VI) and V (V) increased from 44.4% to 93.1% and reduced from 31.9% to 1.8%, respectively, while their separation coefficient increased 16.3 times to 333.4. The activation energy, enthalpy and entropy for the transport of Mo(VI) were determined to be 4.846 kJ mol-1, 6.745 kJ mol-1 and - 310.838 J mol-1 K-1, respectively. The present work demonstrates that the separation of similar metal ions could be improved by fine tuning the affinity and interaction between metal ions and the PIM, thus providing new insights into the recycling of similar metal ions from secondary resources.
Collapse
Affiliation(s)
- Yuzhen Wang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Pengfei Wang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Huihui Xie
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Ming Tan
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Lingyun Wang
- Key Laboratory of Clean Chemical Processing Engineering of Shandong Province, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yang Liu
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Yang Zhang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| |
Collapse
|
4
|
Rai R, Aryal RL, Paudyal H, Gautam SK, Ghimire KN, Pokhrel MR, Poudel BR. Acid-treated pomegranate peel; An efficient biosorbent for the excision of hexavalent chromium from wastewater. Heliyon 2023; 9:e15698. [PMID: 37159700 PMCID: PMC10163652 DOI: 10.1016/j.heliyon.2023.e15698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023] Open
Abstract
We studied the sequestration of hexavalent chromium Cr(VI) from an aqueous solution using chemically modified pomegranate peel (CPP) as an efficient bio-adsorbent. The synthesized material was characterized by X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). The impacts of parameters like solution pH, Cr(VI) concentration, contact time, and adsorbent dosage were investigated. Experimental results of the isotherm studies and adsorption kinetics were found agreeing to the Langmuir isotherm model and pseudo-second-order kinetics, respectively. The CPP showed appreciable Cr(VI) remediation capacity with a maximal loading capacity of 82.99 mg/g at pH 2.0, which was obtained in 180 min at room temperature. Thermodynamic studies revealed the biosorption process as spontaneous, feasible, and thermodynamically favorable. The spent adsorbent was eventually regenerated and reused, and the safe disposal of Cr(VI) was ensured. The study revealed that the CPP can be effectively employed as an affordable sorbent for the excision of Cr(VI) from water.
Collapse
Affiliation(s)
- Rajan Rai
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Ram Lochan Aryal
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Hari Paudyal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Surendra Kumar Gautam
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Kedar Nath Ghimire
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Megh Raj Pokhrel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bhoj Raj Poudel
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Corresponding author. Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
5
|
Tang T, Yang F, Xie M, Xue L, Jiang Z, Xie Z, Wang K, Li Z, Geng L, Hu T. Highly efficient separation and enrichment of hafnium from zirconium oxychloride solutions by advanced ion-imprinted membrane separation technology. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Qin Z, Wang Y, Sun L, Gu Y, Zhao Y, Xia L, Liu Y, Van der Bruggen B, Zhang Y. Vanadium recovery by electrodialysis using polymer inclusion membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129315. [PMID: 35739806 DOI: 10.1016/j.jhazmat.2022.129315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Industrial applications and environmental awareness recently prompted vanadium recovery spell from secondary resources. In this work, a polymer inclusion membrane containing trioctylmethylammonium chloride as carrier was successfully employed in electrodialysis for vanadium recovery from acidic sulfate solutions. The permeability coefficient of V(V) increased from 0.29 µm·s-1 (without electric field) to 4.10 µm·s-1 (with the 20 mA·cm-2 current density). The transport performance of VO2SO4-, which was the predominant species containing V(V) in the acidic region (pH <3), was influenced by the aqueous pH value and sulfate concentration. Under an electric field, a low concentrated H2SO4 solution (0.2 M) effectively stripped V(V) from the membranes, avoiding the requirement of a highly concentrated H2SO4 without electric field. Under the optimum conditions, the permeability coefficient and flux reached 6.80 µm·s-1 and 13.34 µmol·m-2·s-1, respectively. High selectivity was observed for the separation of V(V) and Mo(VI) from mixed solutions of Co (II), Ni (II), Mn (II), and Al (III). Additionally, the separation between Mo(VI) and V(V) was further improved by adjusting the acidity of the stripping solution. The V(V) selectivity for the resulting membrane was higher than that of commercial anion exchange membranes.
Collapse
Affiliation(s)
- Zihan Qin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yuzhen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Liang Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yuanxiang Gu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Lei Xia
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium
| | - Yang Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
7
|
Sun H, Shao C, Jin Q, Li M, Zhang Z, Liang H, Lei H, Qian J, Zhang Y. Response of microbial community structure to chromium contamination in Panax ginseng-growing soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61122-61134. [PMID: 35435557 DOI: 10.1007/s11356-022-20187-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Chromium (Cr) contamination in soil poses a serious security risk for the development of medicine and food with ginseng as the raw material. Microbiome are critical players in the functioning and service of soil ecosystems, but their feedback to Cr-contaminated ginseng growth is still poorly understood. To study this hypothesis, we evaluated the effects of microbiome and different Cr exposure on the soil microbial community using Illumina HiSeq high-throughput sequencing. Our results indicated that 2467 OTUs and 1785 OTUs were obtained in 16S and ITS1 based on 97% sequence similarity, respectively. Bacterial and fungal diversity were affected significantly in Cr-contaminated soil. Besides, Cr contamination significantly changed the composition of the soil bacterial and fungal communities, and some biomarkers were identified in the different classification level of the different Cr-contaminated treatments using LEfSe. Finally, a heatmap of Spearman's rank correlation coefficients and canonical discriminant analysis (CDA) indicated that Chloroflexi, Gemmatimonadetes, Acidobacteria, Verrucomicobia, and Parcubacteria in phylum level and Acidimicrobiia, Gemmatimonadetes, and Deltaproteobacteria in class level were positively correlated with AK, AP, and NO3--N (p < 0.05 or p < 0.01), but negatively correlated with total Cr and available Cr (p < 0.05 or p < 0.01). Similarly, in the fungal community, Tubaria, Mortierellaceae, and Rhizophagus in the phylum level and Glomeromycetes, Agaricomycetes, and Exobasidiomycetes in the class level were positively correlated with AK, AP, and NO3--N (p < 0.05 or p < 0.01), but negatively correlated with total Cr and available Cr (p < 0.05 or p < 0.01). Our findings provide new insight into the effects of Cr contamination on the microbial communities in ginseng-growing soil.
Collapse
Affiliation(s)
- Hai Sun
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Cai Shao
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Qiao Jin
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Meijia Li
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Zhenghai Zhang
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Hao Liang
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Huixia Lei
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Jiaqi Qian
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Yayu Zhang
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China.
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China.
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| |
Collapse
|
8
|
Stability study of polymer inclusion membranes (PIMs) based on acidic (D2EHPA), basic (Aliquat 336) and neutral (TOPO) carriers: effect of membrane composition and aqueous solution. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
MnIn 2S 4 nanosheets growing on rods-like β-MnO 2 via covalent bonds as high-performance photocatalyst for boosting Cr(VI) photocatalytic reduction under visible light irradiation: Behavior and mechanism study. J Colloid Interface Sci 2022; 625:264-277. [PMID: 35717842 DOI: 10.1016/j.jcis.2022.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022]
Abstract
It is an urgent and onerous task to develop catalysts for photocatalytic reduction of Cr(VI) in wastewater under wide pH range. In this work, a novel hierarchical Z-scheme MnO2/MnIn2S4 (MISO) heterojunction photocatalyst with MnIn2S4 nanosheets growing on the surface of β-MnO2 nanorods is constructed for efficient photocatalytic reduction of Cr(VI). The optimized 2.0-MISO photocatalyst exhibits the almost 100% reduction efficiency in the pH range of 2.1-5.6 under visible light irradiation, and the apparent rate constant is 0.05814 min-1, which is 29.96 and 3.27 times higher than the pure β-MnO2 and MnIn2S4, respectively. A efficient photocatalytic reduction of Cr(VI) to Cr(III) species on 2.0-MISO photocatalyst in actual industry wastewater (286.7 mg/L) up to 99.8% is achieved. Under natural light, the 2.0-MISO photocatalyst also shows rapid reduction of Cr(VI) species. The photocorrosion of MnIn2S4 was significantly hindered by the construction of heterojunction. And the O2- and e- species are the main active species during the Cr(VI) photoreduction process. The connection mode between MnIn2S4 and β-MnO2 is verified by DFT calculations and a possible photocatalytic mechanism is also proposed.
Collapse
|
10
|
Zunita M, Hastuti R, Alamsyah A, Kadja GT, Khoiruddin K, Kurnia KA, Yuliarto B, Wenten I. Polyionic liquid membrane: Recent development and perspective. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Stable ionic liquid-based polymer inclusion membranes for lithium and magnesium separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Wang Y, Liu Y, Bao S, Yu Y, Li J, Yang W, Xu S, Li H. Aminated metal-free red phosphorus nanosheets for adsorption and photocatalytic reduction of Cr(VI) from water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Soo JAL, Makhtar MMZ, Shoparwe NF, Otitoju TA, Mohamad M, Tan LS, Li S. Characterization and Kinetic Studies of Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Inclusion Membrane for the Malachite Green Extraction. MEMBRANES 2021; 11:676. [PMID: 34564493 PMCID: PMC8467911 DOI: 10.3390/membranes11090676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Textile industry effluent contains a high amount of toxic colorants. These dyes are carcinogenic and threats to the environment and living beings. In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) was used as the based polymer for PIMs with bis-(2-ethylhexyl) phosphate (B2EHP) and dioctyl phthalate (DOP) as the carrier and plasticizer. The fabricated PIMs were employed to extract the cation dye (Malachite Green; MG) from the feeding phase. PIMs were also characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), contact angle, water uptake, Fourier-transform infrared spectroscopy (FTIR) and ions exchange capacity. The performance of the PIMs was investigated under various conditions such as percentage of carrier and initial dye concentration. With permeability and flux values of 0.1188 cm/min and 1.1913 mg cm/min, PIM produced with 18% w/w PVDF-co-HFP, 21% w/w B2EHP, 1% w/w DOP and 40% w/w THF and was able to achieve more than 97% of MG extraction. The experimental data were then fitted with a pseudo-second-order (PSO) model, and the calculated R2 value was ~0.99. This shows that the data has a good fit with the PSO model. PIM is a potential alternative technology in textile industry effluent treatment; however, the right formulation is crucial for developing a highly efficient membrane.
Collapse
Affiliation(s)
- Jillin Ai Lam Soo
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli Kelantan 17600, Malaysia; (J.A.L.S.); (T.A.O.); (M.M.)
- Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Noor Fazliani Shoparwe
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli Kelantan 17600, Malaysia; (J.A.L.S.); (T.A.O.); (M.M.)
| | - Tunmise Ayode Otitoju
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli Kelantan 17600, Malaysia; (J.A.L.S.); (T.A.O.); (M.M.)
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli Kelantan 17600, Malaysia; (J.A.L.S.); (T.A.O.); (M.M.)
| | - Lian See Tan
- Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Sanxi Li
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China;
| |
Collapse
|
15
|
Wang B, Lang Q, Tan M, Jiang H, Wang L, Liu Y, Zhang Y. Crosslinking improved ion transport in polymer inclusion membrane‐electrodialysis process and the underlying mechanism. AIChE J 2021. [DOI: 10.1002/aic.17397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Baoying Wang
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
- University of Chinese Academy of Sciences Beijing China
| | - Qiaolin Lang
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao China
| | - Ming Tan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao China
| | - Heqing Jiang
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
| | - Lingyun Wang
- Key Laboratory of Clean Chemical Processing Engineering of Shandong Province College of Chemical Engineering, Qingdao University of Science and Technology Qingdao China
| | - Yang Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao China
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
16
|
Campo-Cobo LF, Pérez-Urbano ML, Gutiérrez-Valencia TM, Hoyos-Saavedra OL, Cuervo-Ochoa G. Selective Extraction of Gold with Polymeric Inclusion Membranes Based on Salen Ligands with Electron- Accepting Substituents. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01924-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Bazinet L, Geoffroy TR. Electrodialytic Processes: Market Overview, Membrane Phenomena, Recent Developments and Sustainable Strategies. MEMBRANES 2020; 10:E221. [PMID: 32887428 PMCID: PMC7557436 DOI: 10.3390/membranes10090221] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023]
Abstract
In the context of preserving and improving human health, electrodialytic processes are very promising perspectives. Indeed, they allow the treatment of water, preservation of food products, production of bioactive compounds, extraction of organic acids, and recovery of energy from natural and wastewaters without major environmental impact. Hence, the aim of the present review is to give a global portrait of the most recent developments in electrodialytic membrane phenomena and their uses in sustainable strategies. It has appeared that new knowledge on pulsed electric fields, electroconvective vortices, overlimiting conditions and reversal modes as well as recent demonstrations of their applications are currently boosting the interest for electrodialytic processes. However, the hurdles are still high when dealing with scale-ups and real-life conditions. Furthermore, looking at the recent research trends, potable water and wastewater treatment as well as the production of value-added bioactive products in a circular economy will probably be the main applications to be developed and improved. All these processes, taking into account their principles and specificities, can be used for specific eco-efficient applications. However, to prove the sustainability of such process strategies, more life cycle assessments will be necessary to convince people of the merits of coupling these technologies.
Collapse
Affiliation(s)
- Laurent Bazinet
- Department of Food Sciences, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Université Laval, Quebec, QC G1V0A6, Canada;
| | | |
Collapse
|
18
|
Gurreri L, Tamburini A, Cipollina A, Micale G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. MEMBRANES 2020; 10:E146. [PMID: 32660014 PMCID: PMC7408617 DOI: 10.3390/membranes10070146] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022]
Abstract
This paper presents a comprehensive review of studies on electrodialysis (ED) applications in wastewater treatment, outlining the current status and the future prospect. ED is a membrane process of separation under the action of an electric field, where ions are selectively transported across ion-exchange membranes. ED of both conventional or unconventional fashion has been tested to treat several waste or spent aqueous solutions, including effluents from various industrial processes, municipal wastewater or salt water treatment plants, and animal farms. Properties such as selectivity, high separation efficiency, and chemical-free treatment make ED methods adequate for desalination and other treatments with significant environmental benefits. ED technologies can be used in operations of concentration, dilution, desalination, regeneration, and valorisation to reclaim wastewater and recover water and/or other products, e.g., heavy metal ions, salts, acids/bases, nutrients, and organics, or electrical energy. Intense research activity has been directed towards developing enhanced or novel systems, showing that zero or minimal liquid discharge approaches can be techno-economically affordable and competitive. Despite few real plants having been installed, recent developments are opening new routes for the large-scale use of ED techniques in a plethora of treatment processes for wastewater.
Collapse
Affiliation(s)
| | - Alessandro Tamburini
- Dipartimento di Ingegneria, Università degli Studi di Palermo, viale delle Scienze Ed. 6, 90128 Palermo, Italy; (L.G.); (A.C.); (G.M.)
| | | | | |
Collapse
|