1
|
Lee J, Jung H, Jun BM, Yoon Y, Choi JS, Rho H. Comprehensive evaluation of sodium dichloroisocyanurate (NaDCC) tablets as a novel solid-state alternative to conventional membrane cleaning agents in gravity-driven filtration systems. CHEMOSPHERE 2025; 370:144034. [PMID: 39733947 DOI: 10.1016/j.chemosphere.2024.144034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Gravity-driven membrane (GDM) systems are increasingly recognized as sustainable and energy-efficient solutions for decentralized water treatment. However, membrane fouling, particularly by organic matter, remains a significant operational challenge, necessitating regular chemical cleaning to maintain performance. The present study was undertaken to investigate the cleaning efficiency of sodium dichloroisocyanurate (NaDCC) tablets, a novel solid-state alternative to conventional liquid cleaning agents such as sodium hypochlorite (NaOCl), sodium lauryl sulfate (SLS), acetic acid, and citric acid. NaDCC tablets, originally developed for drinking water disinfection, offer advantages in terms of transport, storage, and safety compared with conventional liquid formulations. A comparative evaluation of cleaning agents was conducted on hollow fiber membranes used in GDM systems, with the concentration and contact times optimized for each chemical. NaOCl demonstrated the highest permeability recovery, reaching 48.29% at 500 mg L-1 after 12 h, followed closely by NaDCC, with a recovery of 46.55% under similar conditions. Conversely, SLS, acetic acid, and citric acid presented significantly lower recovery rates, with maximum flux restorations of 14.57%, 14.90%, and 16.73%, respectively. These results highlight the comparable performance of NaDCC and NaOCl in addressing organic fouling while offering practical advantages such as greater stability and reduced chemical handling risks. This study highlights the efficacy of NaDCC as a viable detergent for GDM systems, and also provides a comprehensive comparative analysis of the water permeability performances of commercial detergents such as NaOCl, which cause various ecotoxicities, and suggests the feasibility of NaDCC as a chemical detergent in practical membrane processes. Our findings contribute to the development of more sustainable and cost-effective membrane-cleaning protocols that enhance long-term operational efficiency and minimize environmental impacts.
Collapse
Affiliation(s)
- Jonghun Lee
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea
| | - Hyejin Jung
- Department of Environmental Engineering, Yonsei University, Yonseidae-gil 1, Wonju, Gangwon, 26493, Republic of Korea
| | - Byung-Moon Jun
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - June-Seok Choi
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| | - Hojung Rho
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Qu Z, Huang J, Wu G, Dong L, Zhang C, Bai Y. Tailor‐made iron‐organic molecular cage embedded polydimethylsiloxane membranes via emulsion casting technique for efficient VOCs removal. J Appl Polym Sci 2022. [DOI: 10.1002/app.53004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng Qu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Jiamin Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Guoliang Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| |
Collapse
|
3
|
Zhang L, Wang J, Zhang Y, Zhu J, Yang J, Wang J, Zhang Y, Wang Y. Leaf-veins-inspired nickel phosphate nanotubes-reduced graphene oxide composite membranes for ultrafast organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Sajid M, Sajid Jillani SM, Baig N, Alhooshani K. Layered double hydroxide-modified membranes for water treatment: Recent advances and prospects. CHEMOSPHERE 2022; 287:132140. [PMID: 34523432 DOI: 10.1016/j.chemosphere.2021.132140] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Layered double hydroxides (LDHs) represent an exciting class of two-dimensional inorganic materials with unique physicochemical properties. They have been widely employed in water treatment due to their high surface areas, excellent ion exchange capacities, and highly tunable structures. They have also been employed in the fabrication and development of membranes for water treatment. 2D nanostructures as well as tailorable "structure forming units", surface functionalization with desired moieties, and interlayer galleries with adjustable heights and internal compositions make them attractive materials for membrane separations. This paper critically overviews the recent advancements in the synthesis and applications of LDH based membranes in water purification. The synthesis techniques and the effect of LDH incorporation into different membrane compositions have been described. LDH-based membranes showed excellent antifouling capability and improved water flux due to enhanced hydrophilicity. Such membranes have been successfully used for the treatment of inorganics, organics from environmental water samples. This review will be useful for understanding the current state of the LDH-based membranes for water purification and defining future research dimensions. In the end, we highlight some challenges and future prospects for the efficient application of LDH-based membranes in water decontamination.
Collapse
Affiliation(s)
- Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Khalid Alhooshani
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
CNTs Intercalated LDH Composite Membrane for Water Purification with High Permeance. NANOMATERIALS 2021; 12:nano12010059. [PMID: 35010009 PMCID: PMC8746470 DOI: 10.3390/nano12010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/15/2023]
Abstract
The pursuit of improved water purification technology has motivated extensive research on novel membrane materials to be carried out. In this paper, one-dimensional carboxylated carbon nanotubes (CNTs) were intercalated into the interlayer space of layered double hydroxide (LDH) to form a composite membrane for water purification. The CNTs/LDH laminates were deposited on the surface of the hydrolyzed polyacrylonitrile (PAN) ultrafiltration membrane through a vacuum-assisted assembly strategy. Based on the characterization of the morphology and structure of the CNTs/LDH composite membrane, it was found that the intercalation of CNT created more mass transfer channels for water molecules. Moreover, the permeance of the CNTs/LDH membrane was improved by more than 50% due to the low friction and rapid flow of water molecules in the CNT tubes. Additionally, the influence of preparation conditions on the separation performance was investigated using Evans blue (EB). Optimized fabrication conditions were given (the concentration of CoAl-LDH was 0.1 g/L and the weight ratio of CNTs was 2 wt.%). Next, the separation performances of the prepared CNTs/LDH composite membrane were evaluated using both single and mixed dye solutions. The results showed that the composite membrane obtained possessed a retention of 98% with a permeance of 2600 kg/(m2·h·MPa) for EB, which was improved by 36% compared with the pristine LDH composite membrane. Moreover, the stability of the CNTs/LDH composite membrane was investigated in 100 h with no obvious permeance drop (less than 13%), which exhibited its great potential in water purification.
Collapse
|
6
|
Rho H, Im SJ, Alrehaili O, Lee S, Jang A, Perreault F, Westerhoff P. Facile Surface Modification of Polyamide Membranes Using UV-Photooxidation Improves Permeability and Reduces Natural Organic Matter Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6984-6994. [PMID: 33949853 DOI: 10.1021/acs.est.0c07844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new optimized ultraviolet (UV) technique induced a photooxidation surface modification on thin-film composite (TFC) polyamide (PA) brackish water reverse osmosis (BWRO) membranes that improved membrane performance (i.e., permeability and organic fouling propensity). Commercial PA membranes were irradiated with UV-B light (285 nm), and the changes in the membrane performance were assessed through dead-end and cross-flow tests. UV-B irradiation at 12 J·cm-2 enhanced the pure water permeability by 34% in the dead-end tests without decreasing the mono- or divalent ion rejections, as compared with the pristine PA membrane, and led to less fouling by natural organic matter in the cross-flow tests. Scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed that UV-B irradiation opened the pore structure and created carboxylic and amine groups on the PA surface, leading to increased membrane surface charge and hydrophilicity. Thus, an optimal UV-B dose appears to modify only a thin layer of the PA membrane surface, which favorably enhances the membrane performance. UV-B did not alter the structure, flux, or salt rejection for cellulose triacetate (CTA)-based membranes. While other membrane surface modifications include oxidants, strong acids, and bases, the UV-B facile treatment is chemical-free, thus reducing chemical wastes, and easy to apply in roll-to-roll fabrication processes of PA membranes. The results also showed that a low UV irradiation dose could be applied to PA or CTA membranes for disinfection or photocatalytic oxidation.
Collapse
Affiliation(s)
- Hojung Rho
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 10223, Republic of Korea
| | - Sung-Ju Im
- Graduate School of Water Resources, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Omar Alrehaili
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Sungyun Lee
- Department of Civil Environmental Engineering, School of Disaster Prevention and Environmental Engineering, Kyungpook National University, 2559, Gyeongsang-daero, Sangju-si, Gyeongsangbuk-do 37224, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Constructing tunable bimodal porous structure in ultrahigh molecular weight polyethylene membranes with enhanced water permeance and retained rejection performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Calcination of layered double hydroxide membrane with enhanced nanofiltration performance. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|