1
|
Sharma J, Gupta R, Ramanujam K, Kulshrestha V. Leveraging Long-Life Alkaline Redox Flow Batteries Using Durable and High-Hydroxide Exchange N-Bridged Triazine Framework Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406395. [PMID: 39840474 DOI: 10.1002/smll.202406395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/23/2024] [Indexed: 01/23/2025]
Abstract
Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB). Bearing dual ion-exchange architectures, the all-hydrocarbon TOF-based PEMs (sTOF's) surpass fluorinated Nafion in terms of energy efficiency (>80%), energy density, and peak power densities. The fabricated sTOF's evidenced the highest net ion-exchange of >2.1 meq g-1 which encourages electrolyte utilization with ≈100% and offers excellent capacities. Moreover, >97% efficiencies are preserved, and rate capability studies illustrate that, with sTOF-5, the RFB can operate at reduced overpotentials (η ≤200 mV) and can uplift batteries life. The sTOF's supports successful demonstrations of batteries at higher redoxolyte concentrations thereby multiplying the energy densities. The afterlife performance of sTOF-5 revealed efficiencies equivalent to fresh Nafion-117 and surpassed bearing >50% capacity after ≈3000 continuous cycles. With sTOF-5, the cell delivered a peak power (Pmax) of 2.3 W which is ≈60% higher than that of Nafion-117 (Pmax = 1.45 W).
Collapse
Affiliation(s)
- Jeet Sharma
- Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Richa Gupta
- Clean Energy Lab, Department of Chemistry, Indian Institute of Technology Madras (IIT-M), Chennai, Tamil Nadu, 600036, India
| | - Kothandaraman Ramanujam
- Clean Energy Lab, Department of Chemistry, Indian Institute of Technology Madras (IIT-M), Chennai, Tamil Nadu, 600036, India
| | - Vaibhav Kulshrestha
- Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Kumari P, Upadhyay P, Tripathi KM, Gupta R, Kulshrestha V, Awasthi K. Sulphonated poly(ethersulfone)/carbon nano-onions-based nanocomposite membranes with high ion-conducting channels for salt removal via electrodialysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87343-87352. [PMID: 37421532 DOI: 10.1007/s11356-023-28570-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Herein, we are reporting the carbon nano onions (CNO)-based sulphonated poly(ethersulfone) (SPES) composite membranes by varying CNO content in SPES matrix for water desalination applications. CNOs were cost-effectively synthesized using flaxseed oil as a carbon source in an energy efficient flame pyrolysis process. The physico- and electrochemical properties of nanocomposite membranes were evaluated and compared to pristine SPES. Moreover, the chemical characterisation of composite membranes and CNOs were illustrated using techniques such as nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA) and universal tensile machine (UTM). In the series of nanocomposite membranes, SPES-0.25 composite membrane displayed the highest water uptake (WU), ion exchange membrane (IEC) and ionic conductivity (IC) values that were enhanced by 9.25%, ~ 44.78% and ~ 6.10%, respectively, compared to pristine SPES membrane. The electrodialytic performance can be achieved maximum when membranes possess low power consumption (PC) and high energy efficiency (Ee). Therefore, the value of Ee and Pc for SPES-0.25 membrane has been determined to be 99.01 ± 0.97% and 0.92 ± 0.01 kWh kg-1, which are 1.12 and 1.11 times higher than the pristine SPES membrane. Hence, integrating CNO nanoparticles into the SPES matrix enhanced the ion-conducting channels.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Prashant Upadhyay
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Vishakhapatnam, Andhra Pradesh, 530003, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
3
|
Sharma PP, Mohammed S, Aburabie J, Hashaikeh R. Valorization of Seawater Reverse Osmosis Brine by Monovalent Ion-Selective Membranes through Electrodialysis. MEMBRANES 2023; 13:562. [PMID: 37367766 DOI: 10.3390/membranes13060562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023]
Abstract
This paper proposes the use of monovalent selective electrodialysis technology to concentrate the valuable sodium chloride (NaCl) component present in seawater reverse osmosis (SWRO) brine for direct utilization in the chlor-alkali industry. To enhance monovalent selectivity, a polyamide selective layer was fabricated on commercial ion exchange membranes (IEMs) through interfacial polymerization (IP) of piperazine (PIP) and 1,3,5-Benzenetricarbonyl chloride (TMC). The IP-modified IEMs were characterized using various techniques to investigate changes in chemical structure, morphology, and surface charge. Ion chromatography (IC) analysis showed that the divalent rejection rate was more than 90% for IP-modified IEMs, compared to less than 65% for commercial IEMs. Electrodialysis results demonstrated that the SWRO brine was successfully concentrated to 14.9 g/L NaCl at a power consumption rate of 3.041 kWh/kg, indicating the advantageous performance of the IP-modified IEMs. Overall, the proposed monovalent selective electrodialysis technology using IP-modified IEMs has the potential to provide a sustainable solution for the direct utilization of NaCl in the chlor-alkali industry.
Collapse
Affiliation(s)
- Prem P Sharma
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Shabin Mohammed
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Jamaliah Aburabie
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Raed Hashaikeh
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
4
|
Zhu J, Meng W, Xue Q, Zhang K. Two dimensional sulfonated molybdenum disulfide (S–MoS2) thin-film nanocomposite nanofiltration membrane for selective desalination. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
Liu Y, Yang Q, Du Z, Liu J, Zhang Y, Zhang W, Qin W. Synthesis of Surface-Functionalized Molybdenum Disulfide Nanomaterials for Efficient Adsorption and Deep Profiling of the Human Plasma Proteome by Data-Independent Acquisition. Anal Chem 2022; 94:14956-14964. [PMID: 36264706 DOI: 10.1021/acs.analchem.2c02736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blood is one of the most important clinical samples for protein biomarker discovery, as it provides rich physiological and pathological information and is easy to obtain with low invasiveness. However, the discovery of protein biomarkers in the blood by mass spectrometry (MS)-based proteomic strategies has been shown to be highly challenging due to the particularly large concentration range of proteins and the strong interference by the high-abundant proteins in the blood. Therefore, developing sensitive methods for low-abundant biomarker protein identification is a key issue that has received great attention. Here, we report the synthesis and characterization of surface-functionalized magnetic molybdenum disulfide (MoS2) for the large-scale adsorption of low-abundant plasma proteins and deep profiling by MS. MoS2 nanomaterials resulted in the coverage of more than 3400 proteins (including a single-peptide hit) in a single LC-MS analysis without peptide prefractionation using pooled plasma samples, which were five times more than those obtained by the direct analysis of the plasma proteome. A detection limit in the low ng L-1 range was obtained, which is rare compared with previous reports.
Collapse
Affiliation(s)
- Yuanyuan Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Qianying Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Zhuokun Du
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Jiayu Liu
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Zhao Z, Li X, Zhang H, Sheng F, Xu T, Zhu Y, Zhang H, Ge L, Xu T. Polyamide-Based Electronanofiltration Membranes for Efficient Anion Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hao Zhang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, People’s Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
7
|
Rajput A, Sharma J, Raj SK, Kulshrestha V. Dehydrofluorinated poly(vinylidene fluoride-co-hexafluoropropylene) based crosslinked cation exchange membrane for brackish water desalination via electrodialysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Multilayered surface modification of anion exchange membrane by MoS2 flakes for improved antifouling performance. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Long side-chain type partially cross-linked poly(vinylidene fluoride-co-hexafluoropropylene) anion exchange membranes for desalination via electrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Regulation of Polyvinyl Alcohol/Sulfonated Nano-TiO 2 Hybrid Membranes Interface Promotes Diffusion Dialysis. Polymers (Basel) 2020; 13:polym13010014. [PMID: 33374509 PMCID: PMC7793141 DOI: 10.3390/polym13010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
It is important to emphasize that the adjustment of an organic–inorganic interfacial chemical environment plays an important role during the separation performance of composite materials. In this paper, a series of hybrid membranes were prepared by blending polyvinyl alcohol (PVA) solution and sulfonated nano-TiO2 (SNT) suspension. The effects of different interfacial chemical surroundings on ions transfer were explored by regulating the dosage content of SNT. The as-prepared membranes exhibited high thermal and mechanical stability, with initial decomposition temperatures of 220–253 °C, tensile strengths of 31.5–53.4 MPa, and elongations at break of 74.5–146.0%. The membranes possessed moderate water uptake (WR) values of 90.9–101.7% and acceptable alkali resistances (swelling degrees were 187.2–206.5% and weight losses were 10.0–20.8%). The as-prepared membranes were used for the alkali recovery of a NaOH/Na2WO4 system via the diffusion dialysis process successfully. The results showed that the dialysis coefficients of OH− (UOH) were in a range of 0.013–0.022 m/h, and separate factors (S) were in an acceptable range of 22–33. Sulfonic groups in the interfacial regions and –OH in the PVA main chains were both deemed to play corporate roles during the transport of Na+ and OH−.
Collapse
|