1
|
Lai YJ, Oh PC, Chew TL, Ahmad AL. Surface Repellency beyond Hydrophobicity: A Review on the Latest Innovations in Superomniphobic Surfaces. ACS OMEGA 2025; 10:5172-5192. [PMID: 39989837 PMCID: PMC11840608 DOI: 10.1021/acsomega.4c08269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 02/25/2025]
Abstract
Superhydrophobic surfaces have long faced challenges in repelling low-surface-tension liquids like oil and alcohol, limiting their practical applications. Over the past few years, researchers have been actively looking for new alternatives to overcome this issue. Recently, superomniphobic surfaces have attracted significant interest due to their ability to repel both high- and low-surface-tension liquids. Compared with superhydrophobic surfaces, superomniphobic surfaces provide enhanced liquid repellency, making them more suitable for industrial and real-world applications. This Review explores the recent advancements in the fabrication of superomniphobic surfaces. Three basic wetting principles, Young's, Wenzel's, and Cassie-Baxter's equations, are discussed. The vital role of low surface energy and high surface roughness of hierarchical and re-entrant structures in achieving a steady Cassie-Baxter state that has a low contact area between the solid surface and liquid droplet is emphasized. Additionally, a comprehensive description of various fabrication techniques, characterizations, and practical applications of superomniphobic surfaces is provided. Finally, the challenges and future prospects regarding this research area are addressed. This comprehensive review aims to inspire researchers to refine and enhance current development methods of superomniphobic surfaces and stimulate further exploration in the research field.
Collapse
Affiliation(s)
- Yee Jack Lai
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Carbon
Capture, Utilization and Storage Centre (CCUSC), Institute of Sustainable
Energy and Resources (ISER), Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Pei Ching Oh
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Carbon
Capture, Utilization and Storage Centre (CCUSC), Institute of Sustainable
Energy and Resources (ISER), Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Thiam Leng Chew
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Carbon
Capture, Utilization and Storage Centre (CCUSC), Institute of Sustainable
Energy and Resources (ISER), Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Abdul Latif Ahmad
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal 14300, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Guo J, Jiang M, Li X, Farid MU, Deka BJ, Zhang B, Sun J, Wang Z, Yi C, Wong PW, Jeong S, Gu B, An AK. Springtail-inspired omniphobic slippery membrane with nano-concave re-entrant structures for membrane distillation. Nat Commun 2024; 15:7750. [PMID: 39237575 PMCID: PMC11377731 DOI: 10.1038/s41467-024-52108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Omniphobic membranes, due to their exceptional properties, have drawn significant attention for overcoming the bottleneck in membrane distillation (MD) technology. This study demonstrates an innovative method for fabricating an omniphobic membrane that is simple and facile compared to other methods such as wet/dry etching and photolithography. The surface morphology of springtails was imitated using electrospraying technique to coat a polyvinylidene fluoride substrate with concave-shaped polystyrene beads that were successfully developed by controlling the electrical traction (voltage) and air resistance (humidity). Then, the lipid coating of springtail surfaces was mimicked by dip-coating the membrane in a low-toxicity short-chain perfluoropolyether lubricant. The concave structure's tiny air pockets increased membrane hydrophobicity significantly, indicated by the fact that the first round of water bouncing took only 16.3 ms. Finally, in MD treatment of seawater containing 1.0 mM sodium dodecyl sulfate, the optimized omniphobic membrane maintained a stable 99.9% salt rejection rate.
Collapse
Affiliation(s)
- Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Mengnan Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Xiaolu Li
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Baoping Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Chunhai Yi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Environmental Engineering, Pusan National University, Pusan, South Korea
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju, South Korea
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Shi D, Gong T, Wang R, Qing W, Shao S. Control the hydrophilic layer thickness of Janus membranes by manipulating membrane wetting in membrane distillation. WATER RESEARCH 2023; 237:119984. [PMID: 37099871 DOI: 10.1016/j.watres.2023.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
Janus membranes with asymmetric wettability have attracted wide attentions for their robust anti-oil-wetting/fouling abilities in membrane distillation (MD). Compared to traditional surface modification approaches, in this study, we provided a new approach which manipulated surfactant-induced wetting to fabricate Janus membrane with a controllable thickness of the hydrophilic layer. The membranes with 10, 20, and 40 μm of wetted layers were obtained by stopping the wetting induced by 40 mg L-1 Triton X-100 (J = 25 L m-2 h-1) at about 15, 40, and 120 s, respectively. Then, the wetted layers were coated using polydopamine (PDA) to fabricate the Janus membranes. The resulting Janus membranes showed no significant change in porosities or pore size distributions compared with the virgin PVDF membrane. These Janus membranes exhibited low in-air water contact angles (< 50°), high underwater oil contact angles (> 145°), and low adhesion with oil droplets. Therefore, they all showed excellent oil-water separation performance with ∼100% rejection and stable flux. The Janus membranes showed no significant decline in flux, but a trade-off existed between the hydrophilic layer thicknesses and the vapor flux. Utilizing membranes with tunable hydrophilic layer thickness, we elucidated the underlying mechanism of such trade-off in mass transfer. Furthermore, the successful modification of membranes with different coatings and in-situ immobilization of silver nanoparticles indicated that this facile modification method is universal and can be further expanded for multifunctional membrane fabrication.
Collapse
Affiliation(s)
- Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan, PR China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan, PR China
| | - Rui Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, PR China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, USA
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, PR China.
| |
Collapse
|
4
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
5
|
Abid MB, Wahab RA, Salam MA, Gzara L, Moujdin IA. Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon 2023; 9:e12810. [PMID: 36793956 PMCID: PMC9922933 DOI: 10.1016/j.heliyon.2023.e12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.
Collapse
Affiliation(s)
- Monis Bin Abid
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
| | - Iqbal Ahmed Moujdin
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Sun J, Zhang B, Yu B, Ma B, Hu C, Ulbricht M, Qu J. Maintaining Antibacterial Activity against Biofouling Using a Quaternary Ammonium Membrane Coupling with Electrorepulsion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1520-1528. [PMID: 36630187 DOI: 10.1021/acs.est.2c08707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antibacterial modification is a chemical-free method to mitigate biofouling, but surface accumulation of bacteria shields antibacterial groups and presents a significant challenge in persistently preventing membrane biofouling. Herein, a great synergistic effect of electrorepulsion and quaternary ammonium (QA) inactivation on maintaining antibacterial activity against biofouling has been investigated using an electrically conductive QA membrane (eQAM), which was fabricated by polymerization of pyrrole with QA compounds. The electrokinetic force between negatively charged Escherichia coli and cathodic eQAM prevented E. coli cells from reaching the membrane surface. More importantly, cathodic eQAM accelerated the detachment of cells from the eQAM surface, particularly for dead cells whose adhesion capacity was impaired by inactivation. The number of dead cells on the eQAM surface was declined by 81.2% while the number of live cells only decreased by 49.9%. Characterization of bacteria accumulation onto the membrane surface using an electrochemical quartz crystal microbalance revealed that the electrorepulsion accounted for the cell detachment rather than inactivation. In addition, QA inactivation mainly contributed to minimizing the cell adhesion capacity. Consequently, the membrane fouling was significantly declined, and the final normalized water flux was promoted higher than 20% with the synergistic effect of electrorepulsion and QA inactivation. This work provides a unique long-lasting strategy to mitigate membrane biofouling.
Collapse
Affiliation(s)
- Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ben Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Boyang Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen45117, Germany
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
7
|
Enhanced permeability and stability of PVDF hollow fiber membrane in DCMD via heat-stretching treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Ren W, Pan J, Gai W, Pan X, Chen H, Li J, Huang L. Fabrication and characterization of PVDF-CTFE/SiO2 electrospun nanofibrous membranes with micro and nano-rough structures for efficient oil-water separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Peng J, Deka BJ, Wu S, Luo Z, Kharraz JA, Jia W. Rational Design of PDA/P-PVDF@PP Janus Membrane with Asymmetric Wettability for Switchable Emulsion Separation. MEMBRANES 2022; 13:14. [PMID: 36676821 PMCID: PMC9861049 DOI: 10.3390/membranes13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Water pollution caused by oil spills or sewage discharges has become a serious ecological environmental issue. Despite the membrane separation technique having a promising application in wastewater purification, the membrane fabrication method and separation robustness have remained unsatisfactory until now. Herein, we developed a novel strategy, spacer-assisted sequential phase conversion, to create a patterned polyvinylidene fluoride@polypropylene (P-PVDF@PP) substrate membrane with a multiscale roughened surface. Based on that surface structure, the underwater oil resistance behavior of the P-PVDF@PP membrane was improved. Moreover, owing to the abundant active sites on the P-PVDF@PP surface, the polydopamine/P-PVDF@PP (PDA/P-PVDF@PP) Janus membrane could be readily fabricated via wet chemical modification, which exhibited excellent switchable oil-water separation performance. Regarding surfactant-stabilized oil-water emulsion, the as-prepared PDA/P-PVDF@PP Janus membrane also had robust separation efficiency (as high as 99% in the n-hexane/water, chloroform/water, and toluene/water emulsion separation cases) and desirable reusability. Finally, the underlying mechanism of emulsion separation in the PDA/P-PVDF@PP Janus membrane was specified. The as-designed PDA/P-PVDF@PP Janus membrane with high-efficiency oil-water separation shows potential application in oily wastewater treatment, and the developed fabrication method has implications for the fabrication of advanced separation membranes.
Collapse
Affiliation(s)
- Jingjun Peng
- National Innovation Center for Advanced Medical Devices, National Institute of Advanced Medical Devices, Shenzhen 518110, China
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shaodi Wu
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Zhongyuan Luo
- National Innovation Center for Advanced Medical Devices, National Institute of Advanced Medical Devices, Shenzhen 518110, China
| | - Jehad A. Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong SAR, China
| | - Wei Jia
- National Innovation Center for Advanced Medical Devices, National Institute of Advanced Medical Devices, Shenzhen 518110, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518110, China
| |
Collapse
|
11
|
Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization. Polymers (Basel) 2022; 14:polym14245439. [PMID: 36559805 PMCID: PMC9782556 DOI: 10.3390/polym14245439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Fluoropolymer membranes are applied in membrane operations such as membrane distillation and membrane crystallization where hydrophobic porous membranes act as a physical barrier separating two phases. Due to their hydrophobic nature, only gaseous molecules are allowed to pass through the membrane and are collected on the permeate side, while the aqueous solution cannot penetrate. However, these two processes suffer problems such as membrane wetting, fouling or scaling. Membrane wetting is a common and undesired phenomenon, which is caused by the loss of hydrophobicity of the porous membrane employed. This greatly affects the mass transfer efficiency and separation efficiency. Simultaneously, membrane fouling occurs, along with membrane wetting and scaling, which greatly reduces the lifespan of the membranes. Therefore, strategies to improve the hydrophobicity of membranes have been widely investigated by researchers. In this direction, hydrophobic fluoropolymer membrane materials are employed more and more for membrane distillation and membrane crystallization thanks to their high chemical and thermal resistance. This paper summarizes different preparation methods of these fluoropolymer membrane, such as non-solvent-induced phase separation (NIPS), thermally-induced phase separation (TIPS), vapor-induced phase separation (VIPS), etc. Hydrophobic modification methods, including surface coating, surface grafting and blending, etc., are also introduced. Moreover, the research advances on the application of less toxic solvents for preparing these membranes are herein reviewed. This review aims to provide guidance to researchers for their future membrane development in membrane distillation and membrane crystallization, using fluoropolymer materials.
Collapse
|
12
|
Jankowski W, Li G, Kujawski W, Kujawa J. Recent development of membranes modified with natural compounds: Preparation methods and applications in water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Hydrophobic metal-organic framework@graphene oxide membrane with enhanced water transport for desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Kim KC, Lin X, Li C. Structural design of the electrospun nanofibrous membrane for membrane distillation application: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82632-82659. [PMID: 36219296 PMCID: PMC9552148 DOI: 10.1007/s11356-022-23066-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
Although membrane distillation (MD) is a promising technology for water desalination and industrial wastewater treatment, the MD process is not widely applied in the global water industry due to the lack of a suitable membrane for the MD process. The design and appropriate manufacture are the most important factors for MD membrane optimization. The well-designed porous structure, superhydrophobic surface, and pore-wetting prevention of the membrane are vital properties of the MD membrane. Nowadays, electrospinning that is capable of manufacturing membranes with superhydrophobic or omni phobic properties is considered a promising technology. Electrospun nanofibrous membranes (ENMs) possess the characteristics of cylindrical morphology, re-entrant structure, and easy-shaping for a specific purpose, benefiting the membrane design and modification. Based on that, this review investigates the current state and future progress of the superhydrophobic, multi-layer, and omniphobic ENMs manufactured with various structural designs for seawater desalination and wastewater purification. We expect that this paper will provide some recommendations and guidance for further fabrication research and the configuration design of ENMs in the MD process for seawater desalination and wastewater purification.
Collapse
Affiliation(s)
- Kuk Chol Kim
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Metallurgical Faculty, Kim Chaek University of Science and Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
15
|
Plasma-assisted facile fabrication of omniphobic graphene oxide membrane with anti-wetting property for membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Shi D, Gong T, Qing W, Li X, Shao S. Unique Behaviors and Mechanism of Highly Soluble Salt-Induced Wetting in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14788-14796. [PMID: 36154007 DOI: 10.1021/acs.est.2c03348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Scaling-induced wettinggreatly limits the application of membrane distillation (MD) for the desalination of high-salinity feed. Although highly soluble salts (e.g., NaCl) have high concentrations in this water, their scaling-induced wetting remains overlooked. To unravel the elusive wetting behaviors of highly soluble salts, in this study, we systematically investigated the scaling formation and wetting progress by in situ observation with optical coherence tomography (OCT). Through examining the influence of salt type and vapor flux on the wetting behavior, we revealed that highly soluble salt-induced wetting, especially under high vapor flux, shared several unique features: (1) occurring before the bulk feed reached saturation, (2) no scale layer formation observed, and (3) synchronized wetting progress on the millimeter scale. We demonstrated that a moving scale layer caused these interesting phenomena. The initial high vapor flux induced high concentration and temperature polarizations, which led to crystallization at the gas-liquid interface and the formation of an initial scale layer. On the one hand, this scale layer bridged the water into the hydrophobic pores; on the other hand, it blocked the membrane pores and reduced the vapor flux. In this way, the decreased vapor flux mitigated the concentration/temperature polarizations, and consequently led to the dissolution of the feed-facing side of the scale layer. This dissolution prevented the membrane pores from being completely blocked, facilitating the transportation and crystallization of salts at the distillate-facing side of the scale layer (i.e., the gas-liquid interface), thus the proceeding of the wetting layer.
Collapse
Affiliation(s)
- Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
17
|
John J, Nambikattu J, Kaleekkal NJ. An integrated Nanofiltration-Membrane Distillation (NF-MD) process for the treatment of emulsified wastewater. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2131578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Juliana John
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| | - Jenny Nambikattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| |
Collapse
|
18
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Ma W, Pan J, Ren W, Chen L, Huang L, Xu S, Jiang Z. Fabrication of antibacterial and self-cleaning CuxP@g-C3N4/PVDF-CTFE mixed matrix membranes with enhanced properties for efficient ultrafiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Wang Y, Yang H, Yang Y, Zhu L, Zeng Z, Liu S, Li Y, Liang Z. Poly(vinylidene fluoride) membranes with underwater superoleophobicity for highly efficient separation of oil-in-water emulsions in resisting fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
|
22
|
Li H, Feng H, Li M, Zhang X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Shao S, Shi D, Hu J, Qing W, Li X, Li X, Ji B, Yang Z, Guo H, Tang CY. Unraveling the Kinetics and Mechanism of Surfactant-Induced Wetting in Membrane Distillation: An In Situ Observation with Optical Coherence Tomography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:556-563. [PMID: 34928146 DOI: 10.1021/acs.est.1c05090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we performed a direct contact membrane distillation and successfully demonstrated the non-invasive imaging of surfactant-induced wetting using optical coherence tomography. This method enabled us to investigate the wetting kinetics, which was found to follow a "three-region" relationship between the wetting rate and surfactant concentration: the (i) nonwetted region, (ii) concentration-dependent region, and (iii) concentration-independent region at low, intermediate, and high surfactant concentrations, respectively. This wetting behavior was explained by the "autophilic effect", i.e., the wetting was caused by the transfer of surfactants from the water-vapor interface to the unwetted membrane and rendered this membrane hydrophilic, and then the wetting frontier moved forward under capillary forces. At region-(i), the surfactant concentration in the water-vapor interface (Clv) was too low to make the unwetted membrane sufficiently hydrophilic; thereby, the membrane could not be wetted. At region-(ii), due to the fast adsorption of the surfactant on the newly wetted membrane, the wetting rate was determined by the advection/diffusion of surfactants from the feed stream. Consequently, the wetting rate increased with the increases in the water flux and surfactant concentration. At region-(iii), the advection/diffusion provided excess surfactants for adsorption, and thus Clv reached its upper limit (maximum surface excess) and the wetting rate leveled off.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Jiangshuai Hu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xue Li
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
24
|
Kharraz JA, Farid MU, Jassby D, An AK. A systematic study on the impact of feed composition and substrate wettability on wetting and fouling of omniphobic and janus membranes in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Membrane Distillation of Saline Water Contaminated with Oil and Surfactants. MEMBRANES 2021; 11:membranes11120988. [PMID: 34940489 PMCID: PMC8708787 DOI: 10.3390/membranes11120988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022]
Abstract
Application of the membrane distillation (MD) process for the treatment of high-salinity solutions contaminated with oil and surfactants represents an interesting area of research. Therefore, the aim of this study is to investigate the effect of low-concentration surfactants in oil-contaminated high-salinity solutions on the MD process efficiency. For this purpose, hydrophobic capillary polypropylene (PP) membranes were tested during the long-term MD studies. Baltic Sea water and concentrated NaCl solutions were used as a feed. The feed water was contaminated with oil collected from bilge water and sodium dodecyl sulphate (SDS). It has been demonstrated that PP membranes were non-wetted during the separation of pure NaCl solutions over 960 h of the module exploitation. The presence of oil (100–150 mg/L) in concentrated NaCl solutions caused the adsorption of oil on the membranes surface and a decrease in the permeate flux of 30%. In turn, the presence of SDS (1.5–2.5 mg/L) in the oil-contaminated high-salinity solutions slightly accelerated the phenomenon of membrane wetting. The partial pores’ wetting accelerated the internal scaling and affected degradation of the membrane’s structure. Undoubtedly, the results obtained in the present study may have important implications for understanding the effect of low-concentration SDS on MD process efficiency.
Collapse
|
26
|
Enhancement of Physical Characteristics of Styrene-Acrylonitrile Nanofiber Membranes Using Various Post-Treatments for Membrane Distillation. MEMBRANES 2021; 11:membranes11120969. [PMID: 34940469 PMCID: PMC8705235 DOI: 10.3390/membranes11120969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022]
Abstract
Insufficient mechanical strength and wide pore size distribution of nanofibrous membranes are the key hindrances for their concrete applications in membrane distillation. In this work, various post-treatment methods such as dilute solvent welding, vapor welding, and cold-/hot-pressing processes were used to enhance the physical properties of styrene–acrylonitrile (SAN) nanofiber membranes fabricated by the modified electrospinning process. The effects of injection rate of welding solution and a working distance during the welding process with air-assisted spraying on characteristics of SAN nanofiber membranes were investigated. The welding process was made less time-consuming by optimizing system parameters of the electroblowing process to simultaneously exploit residual solvents of fibers and hot solvent vapor to reduce exposure time. As a result, the welded SAN membranes showed considerable enhancement in mechanical robustness and membrane integrity with a negligible reduction in surface hydrophobicity. The hot-pressed SAN membranes obtained the highest mechanical strength and smallest mean pore size. The modified SAN membranes were used for the desalination of synthetic seawater in a direct contact membrane distillation (DCMD). As a result, it was found that the modified SAN membranes performed well (>99.9% removal of salts) for desalination of synthetic seawater (35 g/L NaCl) during 30 h operation without membrane wetting. The cold-/hot-pressing processes were able to improve mechanical strength and boost liquid entry pressure (LEP) of water. In contrast, the welding processes were preferred to increase membrane flexibility and permeation.
Collapse
|
27
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Omniphobic membrane with nest-like re-entrant structure via electrospraying strategy for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Ni T, Lin J, Kong L, Zhao S. Omniphobic membranes for distillation: Opportunities and challenges. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
31
|
Liao X, Wang Y, Liao Y, You X, Yao L, Razaqpur AG. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Flux decline induced by scaling of calcium sulfate in membrane distillation: Theoretical analysis on the role of different mechanisms. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Chen Y, Lu KJ, Gai W, Chung TS. Nanofiltration-Inspired Janus Membranes with Simultaneous Wetting and Fouling Resistance for Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7654-7664. [PMID: 34014649 DOI: 10.1021/acs.est.1c01269] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membranes with robust antiwetting and antifouling properties are highly desirable for membrane distillation (MD) of wastewater. Herein, we have proposed and demonstrated a highly effective method to mitigate wetting and fouling by designing nanofiltration (NF)-inspired Janus membranes for MD applications. The NF-inspired Janus membrane (referred to as PVDF-P-CQD) consists of a hydrophobic polyvinylidene fluoride (PVDF) membrane and a thin polydopamine/polyethylenimine (PDA/PEI) layer grafted by sodium-functionalized carbon quantum dots (Na+-CQDs) to improve its hydrophilicity. The vapor flux data have confirmed that the hydrophilic layer does not add extra resistance to water vapor transport. The PVDF-P-CQD membrane exhibits excellent resistance toward both surfactant-induced wetting and oil-induced fouling in direct contact MD (DCMD) experiments. The impressive performance arises from the fact that the nanoscale pore sizes of the PDA/PEI layer would reject surfactant molecules by size exclusion and lower the propensity of surfactant-induced wetting, while the high surface hydrophilicity resulted from Na+-CQDs would induce a robust hydration layer to prevent oil from attachment. Therefore, this study may provide useful insights and strategies to design novel membranes for next-generation MD desalination with minimal wetting and fouling propensity.
Collapse
Affiliation(s)
- Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Kang-Jia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Wenxiao Gai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tai-Shung Chung
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
34
|
Sun J, Wang G, Zhang H, Zhang B, Hu C. Facile fabrication of a conductive polypyrrole membrane for anti-fouling enhancement by electrical repulsion and in situ oxidation. CHEMOSPHERE 2021; 270:129416. [PMID: 33388500 DOI: 10.1016/j.chemosphere.2020.129416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Conductive membranes provide a promising method to alleviate membrane fouling, but their cost-effective fabrication, which is urgently needed, is still a challenge. This paper describes the facile fabrication of an ultrafiltration conductive polypyrrole (PPy)-modified membrane (PMM) by in situ chemical polymerization of FeCl3 and monomer pyrrole vapor on a commercial membrane surface. The resulting membrane had a high electrical conductivity and an outstanding water flux of 2766.55 L m-2 h-1 bar-1. The preparation cost of the PPy deposition was $2.22/m2, which was ∼8% of the commercial ultrafiltration membrane cost. Once the PMM was charged at -1 V as a membrane electrode, the normalized water flux was maintained at 92.48 ± 1.14% after fouling by bovine serum albumin (BSA) solutions, which was 18.82% higher than that when the PMM was not charged. The reduced membrane fouling was ascribed to the electrical repulsion between the negatively charged BSA and the PMM cathode. In addition, hydroxyl and sulfate radicals were generated by peroxymonosulfate (PMS) activation on the PMM surface through electron transfer by PPy, which facilitated foulant oxidation. The PPy on the PMM surface was oxidized after catalysis and electrochemically reduced when the PMM was charged as a cathode, exhibiting continuous catalytic ability for PMS activation. These findings provide an alternative method for the facile fabrication of cost-effective conductive membranes to mitigate membrane fouling.
Collapse
Affiliation(s)
- Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiguo Wang
- CRRC TANGSHAN Co., LTD., Tangshan, 064000, China
| | - Hua Zhang
- CRRC TANGSHAN Co., LTD., Tangshan, 064000, China
| | - Ben Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Yang H, Wang Y, Fang S, Wang G, Zhu L, Zeng Z, Wang L. Janus polyvinylidene fluoride membranes with controllable asymmetric configurations and opposing surface wettability fabricated via nanocasting for emulsion separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Liu L, He H, Wang Y, Tong T, Li X, Zhang Y, He T. Mitigation of gypsum and silica scaling in membrane distillation by pulse flow operation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Khan AA, Kim JO. Enhanced anti-wetting, slippery-surface membranes engineered for long-term operation with hypersaline synthetic and seawater feeds in membrane distillation. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
|
39
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
40
|
Zhu Z, Zhong L, Chen X, Zheng W, Zuo J, Zeng G, Wang W. Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|