1
|
Huang H, Xia J, Liu Y, Wang J, Chen X, Wang W, Lan Q, Zhang X, Lv Y, Liu T. Mineralized Nanofiber Substrates Enabling High-Performance Dually Charged Nanofiltration Membranes with Enhanced Permeability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68273-68284. [PMID: 39610255 DOI: 10.1021/acsami.4c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Nanofiltration membranes (NFMs) with superior permeability and high rejection of both divalent anions and cations are highly desirable to meet the increasing separation demands of complex systems. Herein, we propose a three-in-one strategy to develop a state-of-the-art dually charged thin-film composite (TFC) nanofiltration membrane consisting of a positively charged electrospun nanofiber substrate (NFS) with surface mineralization and a negatively charged polyamide (PA) selective layer prepared by interfacial polymerization (IP). The highly hydrophilic mineralized nanofiber substrate not only effectively reduces the thickness of the PA selective layer but also crumples its structures by the abundant zirconia nanoparticles on the substrate surface, resulting in excellent water flux (15.0 L m-2 h-1 bar-1) for the TFC NFMs. The relationship between the thickness of the selective layer and substrate is further investigated using dissipative particle dynamics (DPD) simulations. Meanwhile, the dually charged NFM exhibits relatively high rejection for both anions (97.1% for Na2SO4 and 97.9% for MgSO4) and cations (87.9% for MgCl2) in aqueous solutions compared with single-charged membranes, which is attributed to the dual-repulsion effect of the selective layer and the substrate surface bearing opposite charges. Moreover, the prepared NFMs exhibit good stability and excellent antifouling performance. This work may pave the way for the development of highly efficient nanofiltration membranes for the practical separation of comprehensively charged solutes.
Collapse
Affiliation(s)
- HaiYan Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - JingJing Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ying Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - JiaoJiao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - XueMin Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - WenXu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Qianqian Lan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Lv
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
2
|
Ma L, Hou M, Wang Y, Tong W, Zheng J. Organosiloxane membranes for heavy aromatic oil fractionation. Chem Commun (Camb) 2024; 60:8083-8086. [PMID: 38990518 DOI: 10.1039/d4cc02669a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The industrial separation of hydrocarbons relies on distillation. Organic solvent nanofiltration can provide an energy-efficient alternative. We prepared high performance organosiloxane membranes for fractionation of heavy aromatics. They achieved a high permeance up to 0.13 L m-2 h-1 bar-1, with a rejection rate of 88.7% for hydrocarbons with five aromatic rings.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Min Hou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Yuemei Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Weiyi Tong
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Junlin Zheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| |
Collapse
|
3
|
Tong YH, Luo LH, Jia R, Han R, Xu SJ, Xu ZL. Whether membranes developed for organic solvent nanofiltration (OSN) tend to be hydrophilic or hydrophobic? ── a review. Heliyon 2024; 10:e24330. [PMID: 38288011 PMCID: PMC10823098 DOI: 10.1016/j.heliyon.2024.e24330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/02/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
In the past few decades, organic solvent nanofiltration (OSN) has attracted numerous researchers and broadly applied in various fields. Unlike conventional nanofiltration, OSN always faced a broad spectrum of solvents including polar solvents and non-polar solvents. Among those recently developed OSN membranes in lab-scale or widely used commercial membranes, researchers preferred to explore intrinsic materials or introduce nanomaterials into membranes to fabricate OSN membranes. However, the hydrophilicity of the membrane surface towards filtration performance was often ignored, which was the key factor in conventional aqueous nanofiltration. The influence of surface hydrophilicity on OSN performance was not studied systematically and thoroughly. Generally speaking, the hydrophilic OSN membranes performed well in the polar solvents while the hydrophobic OSN membranes work well in the non-polar solvent. Many review papers reviewed the basics, problems of the membranes, up-to-date studies, and applications at various levels. In this review, we have focused on the relationship between the surface hydrophilicity of OSN membranes and OSN performances. The history, theory, and mechanism of the OSN process were first recapped, followed by summarizing representative OSN research classified by surface hydrophilicity and types of membrane, which recent OSN research with its contact angles and filtration performance were listed. Finally, from the industrialization perspective, the application progress of hydrophilic and hydrophobic OSN membranes was introduced. We started with history and theory, presented many research and application cases of hydrophilic and hydrophobic OSN membranes, and discussed anticipated progress in the OSN field. Also, we pointed out some future research directions on the hydrophilicity of OSN membranes to deeply develop the effect made by membrane hydrophilicity on OSN performance for future considerations and stepping forward of the OSN industry.
Collapse
Affiliation(s)
- Yi-Hao Tong
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Han Luo
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Jia
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Han
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sun-Jie Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Akbar Heidari A, Mahdavi H. Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. CHEM REC 2023:e202300189. [PMID: 37642266 DOI: 10.1002/tcr.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| |
Collapse
|
5
|
Alotaibi KM, Shukla AK, Bajuayfir E, Alotaibi AA, Mrad MH, Gomaa FA, Alswieleh AM. Ultrasound-assisted synthesis of MSNs/PS nanocomposite membranes for effective removal of Cd 2+ and Pb 2+ ions from aqueous solutions. ULTRASONICS SONOCHEMISTRY 2023; 98:106497. [PMID: 37390783 PMCID: PMC10318429 DOI: 10.1016/j.ultsonch.2023.106497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Contamination of heavy metal (Cd2+ & Pb2+) ions in drinking water is producing major impacts on the environment and public health and is considered one of the greatest dangers to humanity. Membrane technology has been chosen over other processing methods due to its simplicity and high capacity for more effective removal of hazardous heavy metals. In the current study, amine, thiol, and bi-thiol functional groups were used to functionalize mesoporous silica nanoparticles (MSNs) to improve the efficiency of the silica nanoparticle. The morphology of the MSNs as well as the existence of amine and thiol on the surface of MSNs was demonstrated by a variety of characterization techniques, including FTIR, TEM, and SEM examination. The impact of surface-modified MSNs on the morphology, properties, and performance of polysulfone (PS) nanofiltration (NF) membranes was also evaluated. The membrane that incorporated amine with thiol-based MSNs (DiMP-MSNs/PS-NF membrane) had the highest pure water permeability (6.7 LMH bar-1). As a result of the functional groups, the surface-modified MSNs/PS nanofiltration are extremely effective at removing heavy metal ions from aqueous solutions. The surface-modified MSNs/PS nano-filtration membranes exhibit unprecedented Cd2+ and Pb2+ removal rates of approximately 82% and 99%, respectively. This research indicates the possible application of the surface-modified MSNs/PS nanofiltration membrane as a promising platform to remove heavy metal ions from polluted water.
Collapse
Affiliation(s)
- Khalid M Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Arun K Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Elham Bajuayfir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Alotaibi
- Department of Chemistry, College of Sciences and Humanities, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia
| | - Mohamed H Mrad
- Department of Chemistry, College of Sciences and Humanities, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia
| | - Fatma A Gomaa
- Department of Chemistry, College of Sciences and Humanities, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia; Department of Chemistry, College of Women for Science, Arts, and Education, Ain Shams University, Cairo 11757, Egypt
| | - Abdullah M Alswieleh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
6
|
Inorganic salt-conditioning preparation of a copper (II) ions-doped thin film composite membrane with ridge-valley morphology for efficient organic solvent nanofiltration. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Sun H, Li X, Wang N, An QF. Defect engineering on zeolitic imidazolate framework membrane via thermal annealing for organic solvent nanofiltration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis? Molecules 2022; 27:molecules27238558. [PMID: 36500650 PMCID: PMC9738730 DOI: 10.3390/molecules27238558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Commonly found colonizing the human microbiota, Candida albicans is a microorganism known for its ability to cause infections, mainly in the vulvovaginal region known as vulvovaginal candidiasis (VVC). This pathology is, in fact, one of the main C. albicans clinical manifestations, changing from a colonizer to a pathogen. The increase in VVC cases and limited antifungal therapy make C. albicans an increasingly frequent risk in women's lives, especially in immunocompromised patients, pregnant women and the elderly. Therefore, it is necessary to develop new therapeutic options, especially those involving natural products associated with nanotechnology, such as lycopene and mesoporous silica nanoparticles. From this perspective, this study sought to assess whether lycopene, mesoporous silica nanoparticles and their combination would be an attractive product for the treatment of this serious disease through microbiological in vitro tests and acute toxicity tests in an alternative in vivo model of Galleria mellonella. Although they did not show desirable antifungal activity for VVC therapy, the present study strongly encourages the use of mesoporous silica nanoparticles impregnated with lycopene for the treatment of other human pathologies, since the products evaluated here did not show toxicity in the in vivo test performed, being therefore, a topic to be further explored.
Collapse
|
9
|
Huang JH, Shao L, Zhang YQ, Zhang YJ, Wang K, Ma J, Drioli E, Cheng XQ. Relationship between the Hansen solubility parameter and changes in membrane mass-transfer channels: A quantitative model. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Liquid-liquid interface induced high-flux PEBA pervaporation membrane for ethanol recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
11
|
Facile preparation of hydrophobic Halloysite nanotubes (HNTs) for enhancement of organic solvent nanofiltration performance of polydimethylsiloxane (PDMS)-HNTs mixed matrix membrane. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Sinha S, Dutta M, Neogi S, De S. Reduction of total dissolved solids of pre-treated flowback water by two-stage nanofiltration: A gel layer based model to predict the system performance and scale up. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Transmission of sodium chloride in PDMS membrane during Pervaporation based on polymer relaxation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
He H, Xu P, Wang D, Zhou H, Chen C. Polyoxometalate-modified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Nano-filtration performance and temperature dependency of thin film composite polyamide membranes embedded with thermal responsive zwitterionic nanocapsules. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Li J, Pan Y, Ji W, Zhu H, Liu G, Zhang G, Jin W. High-flux corrugated PDMS composite membrane fabricated by using nanofiber substrate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Li C, Li J, Cai P, Cao T, Zhang N, Wang N, An Q. Liquid‐liquid interface induced
PDMS‐PTFE
composite membrane for ethanol perm‐selective pervaporation. AIChE J 2022. [DOI: 10.1002/aic.17694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Chong Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering Beijing University of Technology Beijing China
| | - Jie Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering Beijing University of Technology Beijing China
| | - Peng Cai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering Beijing University of Technology Beijing China
| | - Tengxuan Cao
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering Beijing University of Technology Beijing China
| | - Nai Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering Beijing University of Technology Beijing China
| | - Naixin Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering Beijing University of Technology Beijing China
| | - Quan‐Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering Beijing University of Technology Beijing China
| |
Collapse
|
18
|
Ghazali NF, Md Hanim K, Pahlawi QA, Lim KM. Enrichment of carotene from palm oil by organic solvent nanofiltration. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nazlee Faisal Ghazali
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Khairilanuar Md Hanim
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Qadly Ameen Pahlawi
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Ki Min Lim
- Malaysia‐Japan International Institute of Technology (MJIIT) Universiti Teknologi Malaysia Kuala Lumpur Malaysia
| |
Collapse
|
19
|
Jin CG, Yin MJ, Wu JK, Zhang WH, Wang N, An QF. Development of high-performance and robust membrane via ‘hard-crosslinking-soft’ technique for dehydration of acetic acid. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Gonzales RR, Kato N, Awaji H, Matsuyama H. Development of polydimethylsiloxane composite membrane for organic solvent separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
|
22
|
Fabrication of Polysulfone-Surface Functionalized Mesoporous Silica Nanocomposite Membranes for Removal of Heavy Metal Ions from Wastewater. MEMBRANES 2021; 11:membranes11120935. [PMID: 34940436 PMCID: PMC8706919 DOI: 10.3390/membranes11120935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
Membranes are an efficient way to treat emulsified heavy metal-based wastewater, but they generally come with a trade-off between permeability and selectivity. In this research, the amine and sulphonic groups on the inner and outer surface of mesoporous silica nanoparticles (MSNs) were first modified by a chemical approach. Then, MSNs with amine and sulphonic groups were utilized as new inorganic nanofiller to fabricate mixed matrix polysulfone (PSU) nanocomposite membranes using the classical phase inversion approach. The resultant nanoparticles and membranes were characterized by their physico-chemical characteristics as well as determination of pure water permeability along with cadmium and zinc ion removal. Embedding nanoparticles resulted in a significant rise in the water permeability as a result of changes in the surface properties and porosity of the membrane. Furthermore, the efficiency of developed membranes to remove cadmium and zinc was significantly improved by more than 90% due to the presence of functional groups on nanoparticles. The functionalized-MSNs/PSU nanocomposite membrane has the potential to be an effective industrial effluent removal membrane.
Collapse
|
23
|
Li G, Qi Y, Lin H, Lu N, Chen J, Wang J, Han Q, Liu F. Ni-metal-organic-framework (Ni-MOF) membranes from multiply stacked nanosheets (MSNs) for efficient molecular sieve separation in aqueous and organic solvent. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Impact of crosslinking on organic solvent nanofiltration performance in polydimethylsiloxane composite membrane: Probed by in-situ low-field nuclear magnetic resonance spectroscopy. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Tian Q, Mu W, Shi F, Li Y. Simultaneous Increase of Solvent Flux and Rejection of Thin-Film Composite Membranes by Incorporation of Dopamine-Modified Mesoporous Silica. ACS OMEGA 2021; 6:16241-16250. [PMID: 34179668 PMCID: PMC8223411 DOI: 10.1021/acsomega.1c01966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 05/24/2023]
Abstract
Thin-film nanocomposite membranes have shown great promise in organic solvent nanofiltration. However, it is challenging to acquire high permeation flux without severe swelling, which might do harm to rejection and long-term stability. In this study, we introduced dopamine-modified mesoporous silica nanoparticles into the polyamide (PA) matrix via interfacial polymerization to fabricate a series of thin-film nanocomposite membranes. By using polyethyleneimine (PEI) as the aqueous monomer, the modified nanoparticles are designed to be cross-linked within the PA network, which allows the penetration of PEI into the mesopores, and therefore, the membranes show better resistance to solvent-induced swelling and pressure-induced densification. More importantly, the mesopores of nanoparticles provide additional fast channels for solvents, resulting in an unusual enhancement of solvent flux under reduced membrane swelling. Along with the permeation flux, the rejection performance of the nanocomposite membranes is simultaneously improved, thanks to the controlled swelling arising from the strong interfacial adhesion. Thin-film nanocomposite membranes with optimal filler concentration exhibit a high isopropanol permeance of 8.47 L m-2 h-1 bar-1 as well as a quite low-molecular-weight cutoff of 281 Da.
Collapse
|
26
|
Trivedi JS, Bera P, Bhalani DV, Jewrajka SK. In situ amphiphilic modification of thin film composite membrane for application in aqueous and organic solvents. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Huang JH, Cheng XQ, Bai Q, Zhang YJ, Wang K, Ma J, Shao L. Ultrafast Poly(sodium methacrylate)-Grafted UiO-66-Incorporated Nanocomposite Membranes Enable Excellent Active Pharmaceutical Ingredient Concentration. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00705] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun Hui Huang
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xi Quan Cheng
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
- Sino-European Membrane Technology Research Institute Co., Ltd., Weihai 264209, P. R. China
| | - Qing Bai
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Ying Jie Zhang
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Kai Wang
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Jun Ma
- School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|