1
|
Hu M, Chiao YH, Fu W, Zhang P, Fang S, Guan K, Gonzales RR, Li Z, Xu P, Mai Z, Dai L, Matsuyama H. One-Step Phase Separation and Mineralization Fabrication of Membranes for Oily Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38723-38732. [PMID: 38993041 DOI: 10.1021/acsami.4c07067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Oily wastewater threatens the environment and the human health. Membrane technology offers a simple and efficient alternative to separating oil and water. However, complex membrane modifications are usually employed to optimize the separation performance. In this research, we develop an extremely simple one-step method to in situ calcium carbonate (CaCO3) nanoparticles onto a porous polyketone (PK) membrane via a nonsolvent induced phase separation (NIPS)-mineralization strategy. We utilized the unique chemical property of PK, which allows it to dissolve in a resorcinol aqueous solution. PK was mixed with tannic acid (TA) and calcium chloride (CaCl2) in a resorcinol aqueous solution to fabricate a casting solution. The activated membrane was cast and immersed into a sodium carbonate (Na2CO3) aqueous solution for taking the one-step NIPS-mineralization process. This proposed NIPS-mineralization mechanism comes to two conclusions: (i) the resulting membrane with comprehensive oleophobic properties and enhanced permeation flux for applications of oil/water separation with ultralow fouling and (ii) simplified the procedure to optimize the membrane performance using regular NIPS steps. The current work explores a one-step NIPS-mineralization technique that offers a novel approach to preparing membranes with highly efficient oil/water separation performance.
Collapse
Affiliation(s)
- Mengyang Hu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Yu-Hsuan Chiao
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Wenming Fu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Pengfei Zhang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Shang Fang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Ping Xu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Liheng Dai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Lee C, Kang SW. Influence of citric acid concentrations on the porosity and performance of cellulose acetate-based porous membranes: A comprehensive study. Int J Biol Macromol 2024; 263:130243. [PMID: 38378111 DOI: 10.1016/j.ijbiomac.2024.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
This study investigates the influence of citric acid concentration on the fabrication of porous cellulose acetate (CA) membranes using the Non-Solvent Induced Phase Separation (NIPS) method. A notable aspect is the precise control over membrane properties, particularly pore size and porosity, achieved solely through the adjustment of citric acid concentration, serving as the additive. Higher concentrations of citric acid increase pore size by rendering polymer chains more pliable, whereas lower concentrations lead to smaller, denser pores due to improved dispersion in the CA matrix and altered water interactions during phase separation. A decrease in porosity and Gurley values with reducing citric acid concentrations (from 5 × 10-2 to 1 × 10-3 M ratios) indicates less plasticization of CA chains. However, at very low concentrations (1 × 10-4 and 1 × 10-5), porosity increases, despite the presence of smaller pores, and Gurley values approach those of pure CA in terms of gas permeability. Fourier Transform Infrared (FT-IR) spectroscopy confirms the presence of citric acid and its interaction with carbonyl groups, consistent with the pore size observations from Scanning Electron Microscopy (SEM). Spectral data deconvolution reveals weakened carbonyl bonds due to the reduced presence of citric acid, correlating with the smaller pores observed in SEM. Thermal Gravimetric Analysis (TGA) demonstrates that composite membranes are more thermally stable than pure CA, attributed to the citric acid-induced crosslinking within the polymer chains. Stability increases with decreasing citric acid concentration, with some anomalies at the lowest levels. In conclusion, this study highlights the capability of adjusting citric acid concentration to tailor membrane properties, offering valuable insights for the creation of porous materials across diverse industrial applications.
Collapse
Affiliation(s)
- Chaeyeon Lee
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
3
|
Kim G, Noh JH, Lee H, Shin J, Lee D. Roll-to-Roll Gravure Coating of PVDF on a Battery Separator for the Enhancement of Thermal Stability. Polymers (Basel) 2023; 15:4108. [PMID: 37896351 PMCID: PMC10610101 DOI: 10.3390/polym15204108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The polyethylene lithium-ion battery separator is coated with a polymer by means of a roll-to-roll (R2R) gravure coating scheme to enhance the thermal stability. The polyvinylidene fluoride (PVDF) or polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) is gravure-coated, and the pores are fabricated based on online nonsolvent-induced phase separation (NIPS). N-methylpyrrolidone is used as a solvent, and deionized water or a methanol mixture thereof is exploited as a nonsolvent in NIPS. Scanning electron microscopy confirms that the polymer film is formed and that the pores are well developed. The thermal shrinkage decreased by 20.0% and 23.2% compared to that of the bare separator due to the coating of PVDF and PVDF-HFP, respectively. The R2R gravure coating scheme is proven to be fully functional to tailor the properties of lithium-ion battery separators.
Collapse
Affiliation(s)
- Gyuyoung Kim
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin-Hee Noh
- Daegu Technopark, Daegu 41256, Republic of Korea
| | - Horim Lee
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jaehak Shin
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Dongjin Lee
- School of Mechanical and Aerospace Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Ortega DE, Cortés-Arriagada D, Araya-Hermosilla R. Computational Insights on the Chemical Reactivity of Functionalized and Crosslinked Polyketones to Cu 2+ Ion for Wastewater Treatment. Polymers (Basel) 2023; 15:3157. [PMID: 37571051 PMCID: PMC10420987 DOI: 10.3390/polym15153157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Today, the high concentrations of copper found in water resources result in an urgent problem to solve since human health and aquatic ecosystems have been affected. Functionalized crosslinked polyketone resins (XLPK) have demonstrated high performance for the uptake of heavy metals in water solutions. In addition, its green chemical synthesis makes these resins very attractive as sorbents for metal ions contained in wastewater. XLPK are not soluble in aqueous media and do not require any catalyst, solvent, or harsh conditions to carry out the uptake process. In this paper, a series of functionalized XLPK with pending amino-derivatives namely; butylamine (BA), amino 2-propanol (A2P), 4-(aminomethyl) benzoic acid (HAMC), 6-aminohexanoic acid (PAMBA), and 1,2 diamino propane (DAP) directly attached to the pyrrole backbone of the polymers and crosslinked by di-amine derivatives was investigated using Density Functional Theory (DFT) calculations. Our computational analysis revealed that dipole-dipole interactions played a crucial role in enhancing the adsorption of Cu2+ ions onto XLPKs. The negatively charged ketone moieties and functional groups within XLPKs were identified as key adsorption sites for the selective binding of Cu2+ ions. Additionally, we found that XLPKs exhibited strong electrostatic interactions primarily through the -NH2 and -C=O groups. Evaluation of the adsorption energies in XLPK-Cu(II) complexes showed that the DAP-Cu(II) complex exhibited the highest stability, attributed to strong Cu(II)-N binding facilitated by the amino moiety (-NH2). The remaining XLPKs displayed binding modes involving oxygen atoms (Cu(II)-O) within the ketone moieties in the polymer backbone. Furthermore, the complexation and thermochemical analysis emphasized the role of the coordinator atom (N or O) and the coordinating environment, in which higher entropic effects involved in the adsorption of Cu2+ ions onto XLPKs describes a lower spontaneity of the adsorption process. The adsorption reactions were favored at lower temperatures and higher pressures. These findings provide valuable insights into the reactivity and adsorption mechanisms of functionalized and crosslinked polyketones for Cu2+ uptake, facilitating the design of high-performance polymeric resins for water treatment applications.
Collapse
Affiliation(s)
- Daniela E. Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Facultad de Salud, Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile; (D.C.-A.); (R.A.-H.)
| | - Rodrigo Araya-Hermosilla
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile; (D.C.-A.); (R.A.-H.)
| |
Collapse
|
5
|
Watanabe T, Nakagawa K, Gonzales RR, Kitagawa T, Matsuoka A, Kamio E, Yoshioka T, Matsuyama H. Influence of structure of porous polyketone microfiltration membranes on separation of water‐in‐oil emulsions. J Appl Polym Sci 2023. [DOI: 10.1002/app.53900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Zhai G, Wu J, Yuan Z, Li H, Sun D. Robust Superhydrophobic PDMS@SiO 2@UiO66-OSiR Sponge for Efficient Water-in-Oil Emulsion Separation. Inorg Chem 2023; 62:5447-5457. [PMID: 36961917 DOI: 10.1021/acs.inorgchem.2c03887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
A major challenge in oil/water separation is the processing of surfactant-stabilized emulsions from the water medium. One of the feasible schemes of emulsion separation is the porous melamine sponge coupled with functional particles. Here, we proposed a novel superhydrophobic metal-organic framework (MOF)-based sponge for water-in-oil emulsion separation. The porous melamine sponge was combined with poly(dimethylsiloxane) (PDMS)-coated hydrophobic SiO2 and UiO66-OSiR particles were prepared for demulsification via the one-step dipping method for the first time. The PDMS@SiO2@UiO66-OSiR sponge revealed excellent superhydrophobicity at a water contact angle of 160.7° and superlipophilicity at an oil contact angle of 0°. Compared with the pristine melamine sponge, the size-controllable PDMS@SiO2@UiO66-OSiR sponge could separate stabilized water-in-oil emulsions with ultrahigh separation efficiency (>98.64%) and high flux (e.g., 970 L·m-2·h-1). Meanwhile, the PDMS@SiO2@UiO66-OSiR sponge exhibited superior durability and mechanical reusability. Under harsh conditions such as strong acid and alkali, organic solvent corrosion, etc., all water contact angles of the PDMS@SiO2@UiO66-OSiR sponge were over 152°. Furthermore, the stress decreased by 5% when the sponge was subjected to 10 loading/unloading compression cycles at a constant strain of 60%. These results demonstrate that the PDMS@SiO2@UiO66-OSiR sponge can efficiently separate water-in-oil emulsions through its adjustable porous structure coupled with demulsification and hydrophobic particles. This study provides a step forward in developing a feasible strategy for the MOF-based sponge for emulsion separation.
Collapse
Affiliation(s)
- Guanzhong Zhai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Junwei Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhuorui Yuan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hongmei Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Daohua Sun
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
7
|
Non-Solvent- and Temperature-Induced Phase Separations of Polylaurolactam Solutions in Benzyl Alcohol as Methods for Producing Microfiltration Membranes. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The possibility of obtaining porous films through solutions of polylaurolactam (PA12) in benzyl alcohol (BA) was considered. The theoretical calculation of the phase diagram showed the presence of the upper critical solution temperature (UCST) for the PA12/BA system at 157 °C. The PA12 completely dissolved in BA at higher temperatures, but the resulting solutions underwent phase separation upon cooling down to 120–140 °C because of the PA12’s crystallization. The viscosity of the 10–40% PA12 solutions increased according to a power law but remained low and did not exceed 5 Pa·s at 160 °C. Regardless of the concentration, PA12 formed a dispersed phase when its solutions were cooled, which did not allow for the obtention of strong films. On the contrary, the phase separation of the 20–30% PA12 solutions under the action of a non-solvent (isopropanol) leads to the formation of flexible microporous films. The measurement of the porosity, wettability, strength, permeability, and rejection of submicron particles showed the best results for a porous film produced from a 30% solution by non-solvent-induced phase separation. This process makes it possible to obtain a membrane material with a 240 nm particle rejection of 99.6% and a permeate flow of 1.5 kg/m2hbar for contaminated water and 69.9 kg/m2hbar for pure water.
Collapse
|
8
|
Wang R, Zhu X, Zhu L, Li H, Xue J, Yu S, Liu X, Gan S, Xue Q. Multifunctional superwetting positively charged foams for continuous oil/water emulsion separation and removal of hazardous pollutants from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Vatanpour V, Yavuzturk Gul B, Zeytuncu B, Korkut S, İlyasoğlu G, Turken T, Badawi M, Koyuncu I, Saeb MR. Polysaccharides in fabrication of membranes: A review. Carbohydr Polym 2022; 281:119041. [DOI: 10.1016/j.carbpol.2021.119041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
|
10
|
Gao C, Chen H, Liu S, Chen J, Xing Y, Ji S, Chen J, Zou P, Cai J. Bimetallic polyphenol networks structure modified polyethersulfone membrane with hydrophilic and anti-fouling properties based on reverse thermally induced phase separation method. CHEMOSPHERE 2022; 288:132537. [PMID: 34637865 DOI: 10.1016/j.chemosphere.2021.132537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In order to improve the hydrophobicity of traditional polyethersulfone (PES) membranes, this study combined the reverse thermally induced phase separation (RTIPS) method with the constructed bimetallic polyphenol networks (BMPNs) to prepare hydrophilic anti-fouling membranes. As for BMPNs, tannic acid (TA) was served as an intermediate to construct both the inner and surface hydrophilic layers of the PES membranes. On the one hand, etching Zeolitic imidazolate framework-8 (EZIF-8) with synergistic etching and surface functionalization via TA not only retained the high pore structure of MOFs, but also had good hydrophilicity. On the other hand, the MPN hydrophilic layer was formed on the membrane surface by the combination of TA from the surface of EZIF-8 and iron ions in the coagulation bath. Therefore, BMPNs structure penetrated the interior and surface of PES membrane, which greatly improved the hydrophilic properties. In addition, the membrane with porous surfaces and spongy cross sections by RTIPS method improved the permeability and mechanical properties of the membrane by several times compared with the membrane via NIPS method. The obtained membranes in this experiment showed excellent permeability, just like pure water flux reached 1662.16 L/m2 h, while BSA rejection rate remained at 92.78%. Compared with pure membrane, it showed a better flux recovery rate (FRR = 83.33%) after cleaning, and the reduction of irreversible (Rir = 16.67%) fouling indexes indicated that the adsorption of protein was inhibited. These results suggested that the hydrophilic anti-fouling PES membranes prepared by this method possessed great application potential in membrane separation technology.
Collapse
Affiliation(s)
- Chunmei Gao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongyu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Shenghui Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jinchao Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunqing Xing
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Shifeng Ji
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiajian Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Peng Zou
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiaonan Cai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
11
|
Interfacial polymerization of thin film selective membrane layers: Effect of polyketone substrates. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Superwetting PVDF membrane prepared by in situ extraction of metal ions for highly efficient oil/water mixture and emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Wang A, Li X, Hou T, Lu Y, Zhou J, Zhang X, Yang B. A tree-grapes-like PTFE fibrous membrane with super-hydrophobic and durable performance for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Keresten V, Solovyeva E, Mikhelson K. The Origin of the Non-Constancy of the Bulk Resistance of Ion-Selective Electrode Membranes within the Nernstian Response Range. MEMBRANES 2021; 11:membranes11050344. [PMID: 34067145 PMCID: PMC8150337 DOI: 10.3390/membranes11050344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
The dependence of the bulk resistance of membranes of ionophore-based ion-selective electrodes (ISEs) on the composition of mixed electrolyte solutions, within the range of the Nernstian potentiometric response, is studied by chronopotentiometric and impedance measurements. In parallel to the resistance, water uptake by the membranes is also studied gravimetrically. The similarity of the respective curves is registered and explained in terms of heterogeneity of the membranes due to the presence of dispersed aqueous phase (water droplets). It is concluded that the electrochemical equilibrium is established between aqueous solution and the continuous organic phase, while the resistance refers to the membrane as whole, and water droplets hamper the charge transfer across the membranes. In this way, it is explained why the membrane bulk resistance is not constant within the range of the Nernstian potentiometric response of ISEs.
Collapse
|
16
|
Kang D, Shao H, Chen G, Dong X, Qin S. Microstructure manipulation in PVDF/styrene-maleic anhydride copolymer composite membranes: Effects of miscibility on the phase separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Kang D, Shao H, Chen G, Dong X, Qin S. Fabrication of highly permeable PVDF loose nanofiltration composite membranes for the effective separation of dye/salt mixtures. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118951] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Solovyeva EV, Lu H, Khripoun GA, Mikhelson KN, Kazarian SG. In situ ATR-FTIR spectroscopic imaging of PVC, plasticizer and water in solvent-polymeric ion-selective membrane containing Cd2+-selective neutral ionophore. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Enabling polyketone membrane with underwater superoleophobicity via a hydrogel-based modification for high-efficiency oil-in-water emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118705] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|