1
|
Zhao C, Xie H, Huang H, Cai Y, Chen Z, Cheng J, Xiang D, Li D, Li Z, Wu Y. Superhydrophobic/ superoleophilic polystyrene-based porous material with superelasticity for highly efficient and continuous oil/water separation in harsh environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134566. [PMID: 38743973 DOI: 10.1016/j.jhazmat.2024.134566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/09/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Three-dimensional separation materials with robust physical/chemical stability have great demand for effective and continuous separation of immiscible oil/water mixtures and water-in-oil emulsions, resulting from chemical leakages and discharge of industrial oily wastewaters. Herein, a superelastic polystyrene-based porous material with superhydrophobicity/superoleophilicity was designed and prepared by high internal phase emulsion polymerization to meet the aforementioned requirements. A flexible and hydrophobic aminopropyl terminated polydimethylsiloxane (NH2-PDMS-NH2) segment was introduced into the rigid styrene-divinylbenzene copolymer through 1, 4-conjugate addition reaction with trimethylolpropane triacrylate. The addition of NH2-PDMS-NH2 simultaneously improved the mechanical and hydrophobic properties of the porous material (the water contact angle from 141.2° to 152.2°). The material exhibited outstanding reversible compressibility (80% strain, even in liquid N2 environments) and superhydrophobic stability, even after being repeatedly compressed 100 times, water contact angle still remained above 150°. Meanwhile, the as-prepared material had outstanding hydrophobic stability in corrosive solutions (strong acidic, alkaline, high-salty, and even strong polar solvent), presence of mechanical interference, strong UV radiations, and high/low temperature environments. More importantly, the material could continuously and efficiently separate immiscible oil/water mixture and water-in-oil emulsions under the above conditions, showing huge potential for the large-scale remediation of complex oily wastewaters.
Collapse
Affiliation(s)
- Chunxia Zhao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China.
| | - Hongxia Xie
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Haoran Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China.
| | - Yi Cai
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhuo Chen
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jinbo Cheng
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China
| | - Dong Xiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China
| | - Dong Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhenyu Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China
| | - Yuanpeng Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
2
|
Chen Y, Liu X, Liu G, Chang S, Hu J. Oriented Interpenetrating Capillary Network with Surface Engineering by Porous ZnO from Wood for Membrane Emulsification. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2113. [PMID: 38730920 PMCID: PMC11084715 DOI: 10.3390/ma17092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Membrane emulsification technology has garnered increasing interest in emulsion preparation due to controllable droplet size, narrower droplet size distribution, low energy consumption, simple process design and excellent reproducibility. Nevertheless, the pore structure and surface engineering in membrane materials design play a crucial role in achieving high-quality emulsions with high throughput simultaneously. In this work, an oriented interpenetrating capillary network composed of highly aligned and interconnected wood cell lumens has been utilized to fabricate an emulsion membrane. A novel honeycomb porous ZnO layer obtained by a seed prefabrication-hydrothermal growth method was designed to reconstruct wood channel surfaces for enhanced microfluid mixing. The results show that through the unique capillary mesh microstructure of wood, the emulsion droplets were smaller in size, had narrower pore-size distribution, and were easy to obtain under high throughput conditions. Meanwhile, a well-designed ZnO layer could further improve the emulsion quality of a wood membrane, while the emulsifying throughput is still maintained at a higher level. This demonstrates that the convection process of the microfluid in these wood capillary channels was intensified markedly. This study not only develops advanced membrane materials in emulsion preparation, but also introduces a brand-new field for functional applications of wood.
Collapse
Affiliation(s)
- Yaodong Chen
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (S.C.)
| | - Xiaolin Liu
- Hunan Lintec Co., Ltd., Changsha 410600, China;
| | - Gonggang Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (S.C.)
| | - Shanshan Chang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (S.C.)
| | - Jinbo Hu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (S.C.)
| |
Collapse
|
3
|
Wu J, Tian J, Qian Z, Huang J, Sun D. Highly robust separation for aqueous oils enabled by balsa wood-based cellulose aerogel with intrinsic superior hydrophilicity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Construction of Janus silicon carbide membranes with asymmetric wettability for enhanced antifouling in water-in-oil emulsification process. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
PTFE porous membrane technology: A comprehensive review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
|
7
|
Syed UT, Leonardo IC, Mendoza G, Gaspar FB, Gámez E, Huertas RM, Crespo MT, Arruebo M, Crespo JG, Sebastian V, Brazinha C. On the role of components of therapeutic hydrophobic deep eutectic solvent-based nanoemulsions sustainably produced by membrane-assisted nanoemulsification for enhanced antimicrobial activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
|
9
|
Liu X, Feng S, Wang C, Yan D, Chen L, Wang B. Wettability Improvement in Oil-Water Separation by Nano-Pillar ZnO Texturing. NANOMATERIALS 2022; 12:nano12050740. [PMID: 35269229 PMCID: PMC8911716 DOI: 10.3390/nano12050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
The nanostructure-based surface texturing can be used to improve the materials wettability. Regarding oil−water separation, designing a surface with special wettability is as an important approach to improve the separation efficiency. Herein, a ZnO nanostructure was prepared by a two-step process for sol−gel process and crystal growth from the liquid phase to achieve both a superhydrophobicity in oil and a superoleophobic property in water. It is found that the filter material with nanostructures presented an excellent wettability. ZnO-coated stainless-steel metal fiber felt had a static underwater oil contact angle of 151.4° ± 0.8° and an underoil water contact angle of 152.7° ± 0.6°. Furthermore, to achieve water/oil separation, the emulsified impurities in both water-in-oil and oil-in-water emulsion were effectively intercepted. Our filter materials with a small pore (~5 μm diameter) could separate diverse water-in-oil and oil-in-water emulsions with a high efficiency (>98%). Finally, the efficacy of filtering quantity on separation performance was also investigated. Our preliminary results showed that the filtration flux decreased with the collection of emulsified impurities. However, the filtration flux could restore after cleaning and drying, suggesting the recyclable nature of our method. Our nanostructured filter material is a promising candidate for both water-in-oil and oil-in-water separation in industry.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China; (X.L.); (S.F.); (C.W.)
| | - Shaotong Feng
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China; (X.L.); (S.F.); (C.W.)
| | - Caihua Wang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China; (X.L.); (S.F.); (C.W.)
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Correspondence: (D.Y.); (B.W.)
| | - Lei Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
| | - Bao Wang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China; (X.L.); (S.F.); (C.W.)
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
- Correspondence: (D.Y.); (B.W.)
| |
Collapse
|
10
|
Cheng J, Zhao N, Huang Y, Xiao C, Ma X, Huang Q. Effect of parameters on ME process by near-field electrospun PTFE membrane. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
|
12
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Optimized microporous structure of ePTFE membranes by controlling the particle size of PTFE fine powders for achieving high oil-water separation performances. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Droplet breakup mechanisms in premix membrane emulsification and related microfluidic channels. Adv Colloid Interface Sci 2021; 290:102393. [PMID: 33770649 DOI: 10.1016/j.cis.2021.102393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Premix membrane emulsification (PME) is a pressure driven process of droplet breakup, caused by their motion through membrane pores. The process is widely used for high-throughput production of sized-controlled emulsion droplets and microparticles using low energy inputs. The resultant droplet size depends on numerous process, membrane, and formulation factors such as flow velocity in pores, number of extrusions, initial droplet size, internal membrane geometry, wettability of pore walls, and physical properties of emulsion. This paper provides a comprehensive review of different mechanisms of droplet deformation and breakup in membranes with versatile pore morphologies including sintered glass and ceramic filters, SPG and polymeric membranes with sponge-like structures, micro-engineered metallic membranes with ordered straight-through pore arrays, and dynamic membranes composed of unconsolidated particles. Fundamental aspects of droplet motion and breakup in idealized pore networks have also been covered including droplet disruption in T-junctions, channel constrictions, and obstructed channels. The breakup mechanisms due to shear interactions with pore walls and localized shear (direct breaking) or due to interfacial tension effects and Rayleigh-Plateau instability (indirect breaking) are systematically discussed based on recent experimental and numerical studies. Non-dimensional droplet size correlations based on capillary, Weber, and Ohnesorge numbers are also presented.
Collapse
|
15
|
King WE, Bowlin GL. Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers-Progress and Limitations. Polymers (Basel) 2021; 13:1097. [PMID: 33808288 PMCID: PMC8037214 DOI: 10.3390/polym13071097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/18/2022] Open
Abstract
Near-field electrospinning (NFES) and melt electrowriting (MEW) are the process of extruding a fiber due to the force exerted by an electric field and collecting the fiber before bending instabilities occur. When paired with precise relative motion between the polymer source and the collector, a fiber can be directly written as dictated by preprogrammed geometry. As a result, this precise fiber control results in another dimension of scaffold tailorability for biomedical applications. In this review, biomedically relevant polymers that to date have manufactured fibers by NFES/MEW are explored and the present limitations in direct fiber writing of standardization in published setup details, fiber write throughput, and increased ease in the creation of complex scaffold geometries are discussed.
Collapse
Affiliation(s)
- William E. King
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
- Department of Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gary L. Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
| |
Collapse
|