1
|
Ding L, Han D, Zhang H, Yang S, Zhang Y. Polydopamine-modified carboxylated cellulose nanocrystrals as functional fillers for polyethersulfone (PES) membranes to achieve superior dye/salt separation. Int J Biol Macromol 2025; 308:142482. [PMID: 40169057 DOI: 10.1016/j.ijbiomac.2025.142482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
This study presents the development of advanced tight polyethersulfone (PES) ultrafiltration membranes enhanced with polydopamine-coated carboxylated cellulose nanocrystrals (PDA@C-CNC) as functional fillers. The PDA@C-CNC fillers were synthesized via an in situ self-polymerization approach and employed as surface segregation agents during membrane preparation. Utilizing the non-solvent-induced phase separation (NIPS) technique, the highly hydrophilic PDA@C-CNC particles migrated to the interface between the polymer solution and the coagulation bath and tightly adhered to the polyethersulfone (PES) matrix through strong hydrogen bonding and π-π interactions, forming a dense, hydrophilic selective surface layer rich in polar functional groups (amino group (-NH2) and hydroxyl group(-OH)). Concurrently, the support layer developed a porous structure characterized by extended and widened cavities, facilitating enhanced mass transfer. The synergistic combination of a selective dense surface layer and an optimally structured support layer endowed the modified membranes with remarkable permeability and selectivity. Surprisingly, the water flux of the modified membrane with 0.2 % PDA@C-CNC (MPC0.2) achieved a remarkable 332 L·m-2·h-1·bar-1, which is 2.29 times higher than that of the unmodified membrane (M0). Additionally, MPC0.2 demonstrated exceptional dyes rejection rates (Congo red (CR) > 99.7 %, Eriochrome Black T (EBT) > 97.7 %) alongside minimal salt rejection (sodium chloride (NaCl): 0.2 %, sodium sulfate (Na2SO4): 1.7 %). These findings highlight the potential of PDA@C-CNC/PES composite membranes for efficient and selective removal of dyes and salts from textile wastewater.
Collapse
Affiliation(s)
- Lin Ding
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Deyi Han
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haichuan Zhang
- Department of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shujuan Yang
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yong Zhang
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Xiangshan Knitting Institute, Zhejiang Sci-Tech University, Xiangshan 315700, China.
| |
Collapse
|
2
|
Hani OE, Digua K, Amine A. Elimination of non-specific adsorption in the molecularly imprinted membrane: application for tetracycline detection. Anal Bioanal Chem 2025; 417:2155-2168. [PMID: 40011245 DOI: 10.1007/s00216-025-05804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
A vital challenge in using imprinted membranes for selective sensing is their non-specific adsorption (NSA). In this study, a novel, rapid, and green approach of NSA-free molecularly imprinted membrane (MIM) preparation was proposed. Sodium alginate was employed as a functional polymer (to interact with the template) and as a membrane matrix, then cross-linked with calcium before template removal to block the unreacted groups, followed by exposure to phosphate to chelate any remaining sites. Unlike the non-imprinted membrane (NIM), which is prepared similarly to MIM and lacks the template cavities, the MIM demonstrated exceptional imprinting factor (IF) (Q(NIM) ≈ 0 mg/g) compared to the initial IF of around 4 before NSA suppress, and a selectivity factor over 10 times greater than that of existing MIMs in the literature. The NSA-free MIM was used as a ready-to-use sensor for spectro-fluorescence and smartphone-based fluorescence detection of tetracycline (TC), achieving detection limits of 0.005 mg/L and 0.015 mg/L, respectively, which were below the maximal acceptable concentrations of TC in real samples. The detection of TC in milk and honey samples using the NSA-free MIM showed significant recoveries (86-101%) compared to those found by MIM before NSA supress (114-122%). The proposed methodology serves as an inspiration for extending NSA removal strategies to other MIMs based on various anionic polymers, including carboxylate, sulfonate, phosphonate, and phenolate anionic groups.
Collapse
Affiliation(s)
- Ouarda El Hani
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P. A. 146., Mohammedia, Morocco
| | - Khalid Digua
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P. A. 146., Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P. A. 146., Mohammedia, Morocco.
| |
Collapse
|
3
|
Wang J, Abbas SC, Li L, Walker CC, Ni Y, Cai Z. Cellulose Membranes: Synthesis and Applications for Water and Gas Separation and Purification. MEMBRANES 2024; 14:148. [PMID: 39057656 PMCID: PMC11279174 DOI: 10.3390/membranes14070148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and repel specific species. Membranes can purify air and water by allowing only air and water molecules to pass through, while preventing contaminants such as microorganisms and particles, or to separate a target gas or vapor, such as H2 and CO2, from other gases. The higher the flux and selectivity, the better a material is for membranes. The desirable performance can be tuned through material type (polymers, ceramics, and biobased materials), microstructure (porosity and tortuosity), and surface chemistry. Most membranes are made from plastic from petroleum-based resources, contributing to global climate change and plastic pollution. Cellulose can be an alternative sustainable resource for making renewable membranes. Cellulose exists in plant cell walls as natural fibers, which can be broken down into smaller components such as cellulose fibrils, nanofibrils, nanocrystals, and cellulose macromolecules through mechanical and chemical processing. Membranes made from reassembling these particles and molecules have variable pore architecture, porosity, and separation properties and, therefore, have a wide range of applications in nano-, micro-, and ultrafiltration and forward osmosis. Despite their advantages, cellulose membranes face some challenges. Improving the selectivity of membranes for specific molecules often comes at the expense of permeability. The stability of cellulose membranes in harsh environments or under continuous operation needs further improvement. Research is ongoing to address these challenges and develop advanced cellulose membranes with enhanced performance. This article reviews the microstructures, fabrication methods, and potential applications of cellulose membranes, providing some critical insights into processing-structure-property relationships for current state-of-the-art cellulosic membranes that could be used to improve their performance.
Collapse
Affiliation(s)
- Jinwu Wang
- Forest Products Laboratory, U.S. Forest Service, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Syed Comail Abbas
- Department of Chemical and Biological Engineering, University of Maine, 5737 Jenness Hall, Orono, ME 04469, USA
| | - Ling Li
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Colleen C. Walker
- Process Development Center, University of Maine, 5737 Jenness Hall, Orono, ME 04469, USA
| | - Yonghao Ni
- Department of Chemical and Biological Engineering, University of Maine, 5737 Jenness Hall, Orono, ME 04469, USA
| | - Zhiyong Cai
- Forest Products Laboratory, U.S. Forest Service, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| |
Collapse
|
4
|
Taheri M. Advances in Nanohybrid Membranes for Dye Reduction: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300052. [PMID: 38223886 PMCID: PMC10784202 DOI: 10.1002/gch2.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/18/2023] [Indexed: 01/16/2024]
Abstract
Separating valuable materials such as dyes from wastewater using membranes and returning them to the production line is a desirable environmental and economical procedure. However, sometimes, besides filtration, adsorption, and separation processes, pollutant destruction also can be suitable using photocatalytic membranes. The art of producing nanohybrid materials in contrast with nanocomposites encompasses nanomaterial synthesis as a new product with different properties from raw materials for nanohybrids versus the composition of nanomaterials for nanocomposites. According to the findings of this research, confirming proper synthesis of nanohybrid is one challenge that can be overcome by different analyses, other researchers' reports, and the theoretical assessment of physical or chemical reactions. The application of organic-inorganic nanomaterials and frameworks is another challenge that is discussed in the present work. According to the findings, Nanohybrid Membranes (NHMs) can achieve 100% decolorization, but cannot eliminate salts and dyes, although the removal efficiency is notable for some salts, especially divalent salts. Hydrophilicity, antifouling properties, flux, pressure, costs, usage frequency, and mechanical, chemical, and thermal stabilities of NHMs should be considered.
Collapse
Affiliation(s)
- Mahsa Taheri
- Civil and Environmental Engineering DepartmentAmirkabir University of Technology (AUT)Hafez Ave.Tehran15875‐4413Iran
| |
Collapse
|
5
|
Joshi R, Sebat N, Chi K, Khan M, Johnson KI, Alhamzani AG, Habib MA, Lindstrom T, Hsiao BS. Low Fouling Nanostructured Cellulose Membranes for Ultrafiltration in Wastewater Treatment. MEMBRANES 2023; 13:membranes13020147. [PMID: 36837650 PMCID: PMC9964168 DOI: 10.3390/membranes13020147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/01/2023]
Abstract
Ultrafiltration (UF) is a common technique used in wastewater treatments. However, the issue of membrane fouling in UF can greatly hinder the effectiveness of the treatments. This study demonstrated a low-fouling composite cellulose membrane system based on microfibrillated cellulose (MFC) and silica nanoparticle additives. The incorporation of 'non-spherical' silica nanoparticles was found to exhibit better structural integration in the membrane (i.e., minimal aggregation of silica nanoparticles in the membrane scaffold) as compared to spherical silica. The resulting composite membranes were tested for UF using local wastewater, where the best-performing membrane exhibited higher permeation flux than commercial polyvinylidene difluoride (PVDF) and polyether sulfone (PES) membranes while maintaining a high separation efficiency (~99.6%) and good flux recovery ratio (>90%). The analysis of the fouling behavior using different models suggested that the processes of cake layer formation and pore-constriction were probably two dominant fouling mechanisms, likely due to the presence of humic substances in wastewater. The demonstrated cellulose composite membrane system showed low-fouling and high restoration capability by a simple hydraulic cleaning method due to the super hydrophilic nature of the cellulose scaffold containing silica nanoparticles.
Collapse
Affiliation(s)
- Ritika Joshi
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Nilay Sebat
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Kai Chi
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Madani Khan
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Ken I. Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Abdulrahman G. Alhamzani
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - M. A. Habib
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Tom Lindstrom
- KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Li Y, Pan G, Zhang Y, Wang J, Yu H, Zhao G, Zhao M, Tang G, Guo Y, Wu C, Liu Y. A new method for tailoring the surface pore size and internal pore structure of ultrafiltration membranes without using additives—Atomization-assisted nonsolvent induced phase separation method. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
7
|
Bai L, Ding A, Li G, Liang H. Application of cellulose nanocrystals in water treatment membranes: A review. CHEMOSPHERE 2022; 308:136426. [PMID: 36113655 DOI: 10.1016/j.chemosphere.2022.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials have brought great changes to human society, and development has gradually shifted the focus to environmentally friendly applications. Cellulose nanocrystals (CNCs) are new one-dimensional nanomaterials that exhibit environmental friendliness and ensure the biological safety of water environment. CNCs have excellent physical and chemical properties, such as simple preparation process, nanoscale size, high specific surface area, high mechanical strength, good biocompatibility, high hydrophilicity and antifouling ability. Because of these characteristics, CNCs are widely used in ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes to solve the problems hindering development of membrane technology, such as insufficient interception and separation efficiency, low mechanical strength and poor antifouling performance. This review summarizes recent developments and uses of CNCs in water treatment membranes and discusses the challenges and development prospects of CNCs materials from the perspectives of ecological safety and human health by comparing them with traditional one-dimensional nanomaterials.
Collapse
Affiliation(s)
- Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Aiming Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Efficient and recyclable ultra-thin diameter polyacrylonitrile nanofiber membrane: Selective adsorption of cationic dyes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Burts KS, Plisko TV, Prozorovich VG, Melnikova GB, Ivanets AI, Bildyukevich AV. Modification of Thin Film Composite PVA/PAN Membranes for Pervaporation Using Aluminosilicate Nanoparticles. Int J Mol Sci 2022; 23:ijms23137215. [PMID: 35806220 PMCID: PMC9266310 DOI: 10.3390/ijms23137215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
The effect of the modification of the polyvinyl alcohol (PVA) selective layer of thin film composite (TFC) membranes by aluminosilicate (Al2O3·SiO2) nanoparticles on the structure and pervaporation performance was studied. For the first time, PVA-Al2O3·SiO2/polyacrylonitrile (PAN) thin film nanocomposite (TFN) membranes for pervaporation separation of ethanol/water mixture were developed via the formation of the selective layer in dynamic mode. Selective layers of PVA/PAN and PVA-Al2O3·SiO2/PAN membranes were formed via filtration of PVA aqueous solutions or PVA-Al2O3·SiO2 aqueous dispersions through the ultrafiltration PAN membrane for 10 min at 0.3 MPa in dead-end mode. Average particle size and zeta potential of aluminosilicate nanoparticles in PVA aqueous solution were analyzed using the dynamic light scattering technique. Structure and surface properties of membranes were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. Membrane performance was investigated in pervaporation dehydration of ethanol/water mixtures in the broad concentration range. It was found that flux of TFN membranes decreased with addition of Al2O3·SiO2 nanoparticles into the selective layer due to the increase in selective layer thickness. However, ethanol/water separation factor of TFN membranes was found to be significantly higher compared to the reference TFC membrane in the whole range of studied ethanol/water feed mixtures with different concentrations, which is attributed to the increase in membrane hydrophilicity. It was found that developed PVA-Al2O3·SiO2/PAN TFN membranes were more stable in the dehydration of ethanol in the whole range of investigated concentrations as well as at different temperatures of the feed mixtures (25 °C, 35 °C, 50 °C) compared to the reference membrane which is due to the additional cross-linking of the selective layer by formation hydrogen and donor-acceptor bonds between aluminosilicate nanoparticles and PVA macromolecules.
Collapse
Affiliation(s)
- Katsiaryna S. Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| | - Tatiana V. Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
- Correspondence:
| | - Vladimir G. Prozorovich
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Galina B. Melnikova
- A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Andrei I. Ivanets
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Alexandr V. Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| |
Collapse
|
10
|
Wang Q, Liu S, Liu J, Sun J, Zhang Z, Zhu Q. Sustainable cellulose nanomaterials for environmental remediation - Achieving clean air, water, and energy: A review. Carbohydr Polym 2022; 285:119251. [DOI: 10.1016/j.carbpol.2022.119251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/09/2023]
|
11
|
Das R, Lindström T, Sharma PR, Chi K, Hsiao BS. Nanocellulose for Sustainable Water Purification. Chem Rev 2022; 122:8936-9031. [PMID: 35330990 DOI: 10.1021/acs.chemrev.1c00683] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
Collapse
Affiliation(s)
- Rasel Das
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tom Lindström
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Priyanka R Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai Chi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
12
|
Jaffar SS, Saallah S, Misson M, Siddiquee S, Roslan J, Saalah S, Lenggoro W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes. MEMBRANES 2022; 12:287. [PMID: 35323762 PMCID: PMC8950644 DOI: 10.3390/membranes12030287] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022]
Abstract
Extensive research and development in the production of nanocellulose production, a green, bio-based, and renewable biomaterial has paved the way for the development of advanced functional materials for a multitude of applications. From a membrane technology perspective, the exceptional mechanical strength, high crystallinity, tunable surface chemistry, and anti-fouling behavior of nanocellulose, manifested from its structural and nanodimensional properties are particularly attractive. Thus, an opportunity has emerged to exploit these features to develop nanocellulose-based membranes for environmental applications. This review provides insights into the prospect of nanocellulose as a matrix or as an additive to enhance membrane performance in water filtration, environmental remediation, and the development of pollutant sensors and energy devices, focusing on the most recent progress from 2017 to 2022. A brief overview of the strategies to tailor the nanocellulose surface chemistry for the effective removal of specific pollutants and nanocellulose-based membrane fabrication approaches are also presented. The major challenges and future directions associated with the environmental applications of nanocellulose-based membranes are put into perspective, with primary emphasis on advanced multifunctional membranes.
Collapse
Affiliation(s)
- Syafiqah Syazwani Jaffar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Jumardi Roslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Sariah Saalah
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Wuled Lenggoro
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
13
|
Yang S, Tang R, Dai Y, Wang T, Zeng Z, Zhang L. Fabrication of cellulose acetate membrane with advanced ultrafiltration performances and antibacterial properties by blending with HKUST-1@LCNFs. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|