1
|
Yamamoto Y, Kawahara S. Rubbery Soft Polymer Electrolyte Membrane with a Nanomatrix Channel Prepared from Natural Rubber. ACS OMEGA 2025; 10:17576-17583. [PMID: 40352533 PMCID: PMC12059946 DOI: 10.1021/acsomega.4c11363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
Rubbery soft polymer electrolyte membranes (PEMs) prepared from naturally occurring products are in high demand for the fabrication of flexible fuel cells as a multipurpose energy source to achieve a carbon-neutral society. This work describes the preparation of a rubbery soft PEM from deproteinized natural rubber (DPNR) by grafting-copolymerizing ethyl p-styrenesulfonate (SSEt) onto the surface of rubber particles in the latex stage, followed by hydrolysis with NaOH and cast film formation to construct a nanomatrix channel. The resulting rubbery soft PEM, a graft copolymer of DPNR and poly(p-styrenesulfonic acid) (DPNR-graft-PSS), is characterized by 1H NMR spectroscopy, transmission electron microscopy (TEM), impedance analysis, and tensile testing. The hydrophobic rubber particles with a diameter of about 1 μm are well dispersed in the continuous nanochannel of hydrophilic poly(p-styrenesulfonic acid) with a thickness of about 10 nm that possesses a high proton conductivity, owing to an efficient proton transportation, which is beneficial for polymer electrolyte fuel cells. σ* is the proton conductivity per unit equivalent of sulfonic acid, which is distinguished from the proton conductivity, σ. The value of σ* for the DPNR-graft-PSS prepared with 1.0 mol/kg-rubber of SSEt is 2.6 (S/cm)/meq, which is approximately 1.4 times higher than that of the perfluorosulfonic acid membrane Nafion117, whereas its σ is lower. The apparent activation energy of DPNR-graft-PSS (3.2 kJ/mol) is lower than that of Nafion117, and its stress at break (6.9 MPa) is higher than that of DPNR. The high σ*, low apparent activation energy, and outstanding tensile strength of DPNR-graft-PSS can be attributed to the formation of the nanomatrix channel.
Collapse
Affiliation(s)
- Yoshimasa Yamamoto
- Department
of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida, Hachioji, Tokyo 193-0997, Japan
| | - Seiichi Kawahara
- Department
of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
2
|
Li X, Zhang B, Wang Z, Chen Y, Guo J, Kang S, Zou W, Zheng J, Li S, Zhang S. Confined Nano-Channels Incorporated with Multi-Quaternized Cations for Highly Phosphoric Acid Retention HT-PEMs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308860. [PMID: 38168096 DOI: 10.1002/smll.202308860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Developing a new strategy to retain phosphoric acid (PA) to improve the performance and durability of high-temperature proton exchange membrane fuel cell (HT-PEMFC) remains a challenge. Here, a strategy for ion-restricted catcher microstructure that incorporates PA-doped multi-quaternized poly(fluorene alkylene-co-biphenyl alkylene) (PFBA) bearing confined nanochannels is reported. Dynamic analysis reveals strong interaction between side chains and PA molecules, confirming that the microstructure can improve PA retention. The PFBA linked with triquaternary ammonium side chain (PFBA-tQA) shows the highest PA retention rate of 95%. Its H2/O2 fuel cell operates within 0.6% voltage decay at 160 °C/0% RH, and it also runs over 100 h at 100 °C/49% RH under external humidification. This combination of high PA retention, and chemical and dimensional stability fills a gap in the HT-PEMFC field, which requires strict moisture control at 90-120 °C to prevent acid leaching, simplifying the start-up procedure of HT-PEMFC without preheating.
Collapse
Affiliation(s)
- Xiaofeng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zimo Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuwen Kang
- Transimage Sodium-Ion Battery Technology, Gaoyou, 225600, China
| | - Weimin Zou
- Transimage Sodium-Ion Battery Technology, Gaoyou, 225600, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Di Virgilio M, Basso Peressut A, Pontoglio A, Latorrata S, Dotelli G. Study of Innovative GO/PBI Composites as Possible Proton Conducting Membranes for Electrochemical Devices. MEMBRANES 2023; 13:428. [PMID: 37103855 PMCID: PMC10143660 DOI: 10.3390/membranes13040428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
The appeal of combining polybenzimidazole (PBI) and graphene oxide (GO) for the manufacturing of membranes is increasingly growing, due to their versatility. Nevertheless, GO has always been used only as a filler in the PBI matrix. In such context, this work proposes the design of a simple, safe, and reproducible procedure to prepare self-assembling GO/PBI composite membranes characterized by GO-to-PBI (X:Y) mass ratios of 1:3, 1:2, 1:1, 2:1, and 3:1. SEM and XRD suggested a homogenous reciprocal dispersion of GO and PBI, which established an alternated stacked structure by mutual π-π interactions among the benzimidazole rings of PBI and the aromatic domains of GO. TGA indicated a remarkable thermal stability of the composites. From mechanical tests, improved tensile strengths but worsened maximum strains were observed with respect to pure PBI. The preliminary evaluation of the suitability of the GO/PBI X:Y composites as proton exchange membranes was executed via IEC determination and EIS. GO/PBI 2:1 (IEC: 0.42 meq g-1; proton conductivity at 100 °C: 0.0464 S cm-1) and GO/PBI 3:1 (IEC: 0.80 meq g-1; proton conductivity at 100 °C: 0.0451 S cm-1) provided equivalent or superior performances with respect to similar PBI-based state-of-the-art materials.
Collapse
Affiliation(s)
| | | | | | - Saverio Latorrata
- Correspondence: (A.B.P.); (S.L.); Tel.: +39-02-2399-3190 (A.B.P. & S.L.)
| | | |
Collapse
|
4
|
Li T, Yang J, Chen Q, Zhang H, Wang P, Hu W, Liu B. Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1932. [PMID: 36903047 PMCID: PMC10003937 DOI: 10.3390/ma16051932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) are of great interest to researchers in industry and academia because of their wide range of applications. This review lists some creative cross-linked polybenzimidazole-based membranes that have been prepared in recent years. Based on the investigation into their chemical structure, the properties of cross-linked polybenzimidazole-based membranes and the prospect of their future applications are discussed. The focus is on the construction of cross-linked structure of various types of polybenzimidazole-based membranes and their effect on proton conductivity. This review expresses the outlook and good expectation of the future direction of cross-linked polybenzimidazole membranes.
Collapse
Affiliation(s)
- Tianyang Li
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayu Yang
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qingxin Chen
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hui Zhang
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Wang
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wei Hu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Baijun Liu
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
5
|
Ata AÇ, Yildiko Ü, Tanriverdi AA, Ebiri R, Yiğit E, Orak İ, Cakmak İ. Two‐step novel aromatic polyimide synthesis and characterization: Survey of energy calculations and diode applications. J Appl Polym Sci 2023. [DOI: 10.1002/app.53689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ahmet Çağrı Ata
- Institute of Science, Department of Chemistry Kafkas University Kars Turkey
| | - Ümit Yildiko
- Architecture and Engineering Faculty, Department of Bioengineering Kafkas University Kars Turkey
| | | | - Rüstem Ebiri
- Faculty of Sciences. Department of Chemistry Ataturk University Erzurum Turkey
| | - Evin Yiğit
- Department of Chemistry, Faculty of Sciences and Arts Bingol University Bingol Turkey
| | - İkram Orak
- Vocational School of Health Services Bingol University Bingol Turkey
- Renewable Energy Systems, Institute of Science Bingol University Bingol Turkey
| | - İsmail Cakmak
- Faculty of Arts and Sciences. Department of Chemistry Kafkas University Kars Turkey
| |
Collapse
|
6
|
Zhao Y, Lv B, Song W, Hao J, Zhang J, Shao Z. Influence of the PBI structure on PBI/CsH5(PO4)2 membrane performance for HT-PEMFC application. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
7
|
Xu F, Chen Y, Li J, Han Y, Lin B, Ding J. Robust poly(alkyl–fluorene isatin) proton exchange membranes grafted with pendant sulfonate groups for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Wang G, Yang S, Kang NY, Lu M, Hua B, Wei H, Kang J, Tang W, Lee YM. Sulfonated graphene oxide doped sulfonated polybenzothiazoles for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Tanriverdi AA, Yildiko U, Tekes AT, Cakmak İ, Ata AC. Synthesis, characterization and affinity detection of sulfonated polyimides: confirmation of proton transfer in quantum theory simulations. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Vatanpour V, Dehqan A, Paziresh S, Zinadini S, Zinatizadeh AA, Koyuncu I. Polylactic acid in the fabrication of separation membranes: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Nasrollahi N, Yousefpoor M, Khataee A, Vatanpour V. Polyurethane-based separation membranes: a review on fabrication techniques, applications, and future prospectives. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Selim A, Szijjártó GP, Románszki L, Tompos A. Development of WO 3-Nafion Based Membranes for Enabling Higher Water Retention at Low Humidity and Enhancing PEMFC Performance at Intermediate Temperature Operation. Polymers (Basel) 2022; 14:polym14122492. [PMID: 35746074 PMCID: PMC9227791 DOI: 10.3390/polym14122492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
The proton exchange membrane (PEM) represents a pivotal material and a key challenge in developing fuel cell science and hydrogen technology. Nafion is the most promising polymer which will lead to its commercialisation. Hybrid membranes of nanosized tungsten oxide (WO3) and Nafion were fabricated, characterised, and tested in a single cell. The incorporation of 10 wt% WO3 resulted in 21% higher water uptake, 11.7% lower swelling ratio, almost doubling the hydration degree, and 13% higher mechanical stability of the hybrid membrane compared to the Nafion XL. Compared to commercial Nafion XL, the rNF-WO-10 hybrid membrane showed an 8.8% and 20% increase in current density of the cell at 0.4 V operating at 80 and 95 °C with 1.89 and 2.29 A/cm2, respectively. The maximum power density has increased by 9% (0.76 W/cm2) and 19.9% (0.922 W/cm2) when operating at the same temperatures compared to the commercial Nafion XL membrane. Generally, considering the particular structure of Nafion XL, our Nafion-based membrane with 10 wt% WO3 (rNF-WO-10) is a suitable PEM with a comparable performance at different operating conditions.
Collapse
Affiliation(s)
- Asmaa Selim
- Research Centre for Natural Sciences, Renewable Energy Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (G.P.S.); (A.T.)
- National Research Centre, Chemical Engineering and Pilot Plat Department, Engineering and Renewable Energy Research Institute, 33 El Bohouth Street, Giza 12622, Egypt
- Correspondence:
| | - Gábor Pál Szijjártó
- Research Centre for Natural Sciences, Renewable Energy Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (G.P.S.); (A.T.)
| | - Loránd Románszki
- Research Centre for Natural Sciences, Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary;
| | - András Tompos
- Research Centre for Natural Sciences, Renewable Energy Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (G.P.S.); (A.T.)
| |
Collapse
|
13
|
Yildiko U, Tanriverdi AA. A novel sulfonated aromatic polyimide synthesis and characterization: Energy calculations,
QTAIM
simulation study of the hydrated structure of one unit. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Umit Yildiko
- Engineering and Architecture Faculty, Department of Bioengineering Kafkas University Kars Turkey
| | | |
Collapse
|
14
|
Huang Z, Lv B, Zhou L, Tao wei, Qin X, Shao Z. Ultra-thin h-BN doped high sulfonation sulfonated poly (ether-ether-ketone) of PTFE-reinforced proton exchange membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Liu Q, Li X, Zhang S, Wang Z, Chen Y, Zhou S, Wang C, Wu K, Liu J, Mao Q, Jian X. Novel sulfonated N-heterocyclic poly(aryl ether ketone ketone)s with pendant phenyl groups for proton exchange membrane performing enhanced oxidative stability and excellent fuel cell properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Guo Z, Chen J, Byun JJ, Perez–Page M, Ji Z, Zhao Z, Holmes SM. Insights into the performance and degradation of polybenzimidazole/muscovite composite membranes in high–temperature proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
|
18
|
Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells. MEMBRANES 2021; 11:membranes11110826. [PMID: 34832055 PMCID: PMC8618715 DOI: 10.3390/membranes11110826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hindered their extensive use. Applying polybenzimidazole (PBI) membranes can avoid these problems. The high thermal stability allows PBI membranes to work at elevated temperatures when the CO tolerance can be significantly improved; the excellent methanol resistance also makes it suitable for DMFCs. However, the poor proton conductivity of pristine PBI makes it hard to be directly applied in fuel cells. In the past decades, researchers have made great efforts to promote the proton conductivity of PBI membranes, and various effective modification methods have been proposed. To provide engineers and researchers with a basis to further promote the properties of fuel cells with PBI membranes, this paper reviews critical researches on the modification of PBI membranes in both hydrogen-air PEMFCs and DMFCs aiming at promoting the proton conductivity. The modification methods have been classified and the obtained properties have been included. A guide for designing modifications on PBI membranes for high-performance fuel cells is provided.
Collapse
|
19
|
Rajabi Z, Javanbakht M, Hooshyari K, Adibi M, Badiei A. Phosphoric acid doped polybenzimidazole based polymer electrolyte membrane and functionalized SBA-15 mesoporous for elevated temperature fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2021; 46:33241-33259. [DOI: 10.1016/j.ijhydene.2021.07.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
20
|
Safikhani A, Vatanpour V, Habibzadeh S, Saeb MR. Application of graphitic carbon nitrides in developing polymeric membranes: A review. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14175440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
Collapse
|
22
|
Bagheri B, Pooresmaeil M, Namazi H. Improve the performance of proton exchange membranes based on sulfopropylated amino polyethersulfone/poly [2,2ʹ-(m-pyrazolidene)-5,5ʹ-bibenzimidazole] blend through SiO2 nanoparticles importing. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Zhang M, Wang G, Li F, He Z, Zhang J, Chen J, Wang R. High conductivity membrane containing polyphosphazene derivatives for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Novel proton conducting core-shell PAMPS-PVBS@Fe 2TiO 5 nanoparticles as a reinforcement for SPEEK based membranes. Sci Rep 2021; 11:4926. [PMID: 33649374 PMCID: PMC7921097 DOI: 10.1038/s41598-021-84321-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/15/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, new nanocomposite membranes from sulfonated poly (ether ether ketone) (SPEEK) and proton-conducting Fe2TiO5 nanoparticles are prepared by the solution casting method. Sulfonated core–shell Fe2TiO5 nanoparticles are synthesized by redox polymerization. Therefore, 4-Vinyl benzene sulfonate (VBS) and 2-acrylamide-2-methyl-1-propane sulfonic acid (AMPS) are grafted on the surface of nanoparticles through radical polymerization. The different amounts of hybrid nanoparticles (PAMPS@Fe2TiO5 and PVBS@Fe2TiO5) are incorporated into the SPEEK matrix. The results show higher proton conductivity for all prepared nanocomposites than that of the SPEEK membrane. Embedding the sulfonated Fe2TiO5 nanoparticles into the SPEEK membrane improves proton conductivity by creating the new proton conducting sites. Besides, the nanocomposite membranes showed improved mechanical and dimensional stability in comparison with that of the SPEEK membrane. Also, the membranes including 2 wt% of PAMPS@Fe2TiO5 and PVBS@Fe2TiO5 nanoparticles indicate the maximum power density of 247 mW cm−2 and 226 mW cm−2 at 80 °C, respectively, which is higher than that of for the pristine membrane. Our prepared membranes have the potential for application in polymer electrolyte fuel cells.
Collapse
|
25
|
High-temperature PEMs based on polybenzimidazole and new nanoparticles for fuel cell application. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-019-1923-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Yuan C, Wang Y. The preparation of novel sulfonated poly(aryl ether ketone sulfone)/TiO2 composite membranes with low methanol permeability for direct methanol fuel cells. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320958044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A sulfonated poly(aryl ether ketone sulfone) (SPAEKS) with locally dense sulfonic acid groups is synthesized and different amounts of TiO2 is doped into SPAEKS matrix to prepare composite membranes (SPAEKS/TiO2-x). SEM shows that TiO2 in the composite membranes has good dispersibility when TiO2 content is not higher than 3%. The composite membranes show good mechanical properties, dimensional stability and oxidative stability. The proton conductivity of composite membranes is near to that of Nafion 117 membrane and methanol permeability of composite membranes is much lower than that of Nafion 117 membrane. Therefore, the proton selectivity of composite membranes is higher than that of Nafion 117 membrane. In particular, proton selectivity of SPAEKS/TiO2-3% (12.8 × 104 S s cm−3) is four times higher than that of Nafion 117 membrane (3.2 × 104 S s cm−3).
Collapse
Affiliation(s)
- Chengyun Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Yinghan Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|