1
|
Bozorov Y, Turaev K, Alikulov R, Karimov M, Muminov B, Berdimurodov E, Eliboev I, Demir M, Yusuff AS, Elangovan N. Ion exchange membranes in environmental applications: Comprehensive review. CHEMOSPHERE 2025; 377:144327. [PMID: 40120562 DOI: 10.1016/j.chemosphere.2025.144327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Ion exchange membranes (IEMs) are transformative materials in environmental and industrial applications, offering selective ion transport capabilities crucial for water desalination, wastewater treatment, energy generation, and resource recovery. Recent advancements have focused on developing nanocomposite and organic-inorganic hybrid membranes, integrating materials like graphene oxide, silica, and carbon nanotubes to enhance mechanical strength, thermal stability, and chemical resistance. These innovations have yielded remarkable results, such as achieving 77.9 % energy conversion efficiency and current densities of 1000 mA/cm2 in seawater electrolysis systems. Additionally, advanced IEMs demonstrate significant improvements in selective ion removal, with lithium recovery efficiencies reaching 93 % and fluoride reduction below WHO guidelines. Despite these successes, challenges like fouling, chemical degradation, high costs, and scalability barriers remain. Future research directions emphasize sustainability, with a focus on biopolymer-based membranes, renewable energy integration, and computational modeling. By addressing these challenges, IEMs can significantly contribute to global environmental sustainability and resource efficiency. IEMs are vital in energy generation, enabling ion transport in fuel cells (PEMFCs, AEMFCs) for clean energy, redox flow batteries (VRFBs) for efficient energy storage, and electrolyzers (PEMELs, AEMELs) for hydrogen production. They also support salinity gradient power in reverse electrodialysis (RED) and pressure-retarded osmosis (PRO) and facilitate CO2 electroreduction (CO2RR) for carbon-neutral fuel production. This review (covering 2020-2024 publication years) explores recent developments in IEM technology, highlighting their applications, challenges, and future prospects in addressing global environmental and industrial challenges.
Collapse
Affiliation(s)
- Yokubjon Bozorov
- Faculty of Chemistry, Termez State University, Termez, Uzbekistan
| | - Khait Turaev
- Faculty of Chemistry, Termez State University, Termez, Uzbekistan
| | - Rustam Alikulov
- Faculty of Chemistry, Termez State University, Termez, Uzbekistan
| | - Masud Karimov
- Tashkent Chemical Technology Research Institute, Tashkent, Uzbekistan
| | | | - Elyor Berdimurodov
- Chemical & Materials Engineering, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Faculty of Chemistry, National University of Uzbekistan, Tashkent, 100034, Uzbekistan.
| | - Ilyos Eliboev
- Department of Pharmaceutical and Chemistry, Alfraganus University, Tashkent, 100190, Uzbekistan; Physics and chemistry, Western Caspian University, Baku, AZ-1001, Azerbaijan; Faculty of Chemistry and Biology, Karshi State University, Karshi City, Uzbekistan
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Türkiye; TUBITAK Marmara Research Center, Material Institute, Gebze, 41470, Türkiye
| | - Adeyinka Sikiru Yusuff
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Natarajan Elangovan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Research Centre for Computational and Theoretical Chemistry, Anjalam-621208, Musiri, Tiruchirappalli, Tamilnadu, India
| |
Collapse
|
2
|
Tian L, Wang M, Liao G, Liu B, Sun Y, Hu Y, Lu Z. Semi-Interpenetrating Polymer Network Anion Exchange Membranes Based on Quaternized Polybenzoxazine and Poly(Vinyl Alcohol-Co-Ethylene) for Acid Recovery by Diffusion Dialysis. Chemistry 2024; 30:e202401361. [PMID: 39031662 DOI: 10.1002/chem.202401361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Acid recovery from acidic waste is a pressing issue in current times. Chemical methods for recovery are not economically feasible and require significant energy input to save the environment. This study reported a semi-interpenetrating polymer network (semi-IPN) anion exchange membranes (AEMs) for acid recovery by diffusion dialysis with excellent dimensional stability, high oxidation stability, good acid dialysis coefficient (UH +) and high separation factor (S). Semi-IPN AEMs are prepared by ring-open cross-linked quaternized polybenzoxazine (AQBZ) with poly(vinyl alcohol-co-ethylene), where AQBZ is obtained by Mannich reaction and Menshutkin reaction. All four proportions of semi-IPNs exhibit clear micro-phase separation, which is conducive to ion transport. The water uptake (WU) of the four semi-IPNs ranges from 14.2 % to 19.2 %, while the swelling ratio (SR) remains between 8.7 % and 11.3 %. These results indicate that the cross-linked structure in the designed semi-IPNs effectively control swelling and ensure dimensional stability. The thermal degradation temperature (Td5) of semi-IPN4:6 to semi-IPN7:3 varies from 309 °C to 289 °C, with an oxidation stability weight loss rate (WOX) ranging from 91.5 % to 93.5 %, demonstrating excellent thermal stability and oxidation stability. The semi-IPNs also show good UH + values ranging from 11.9-16.3*10-3 m/h and high S values between 38.6 and 45.9, indicating the promising potential of the semi-IPNs.
Collapse
Affiliation(s)
- Longyu Tian
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Min Wang
- Dongying Hualian Petrochemical Co.Ltd., Dongying, P. R. China
| | - Guangming Liao
- Dongying Hualian Petrochemical Co.Ltd., Dongying, P. R. China
| | - Baoliang Liu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Yucheng Sun
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Yukun Hu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Zaijun Lu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| |
Collapse
|
3
|
Gong Y, Chen W, Shen HY, Cheng C. Semi-interpenetrating Polymer-Network Anion Exchange Membrane Based on Quaternized Polyepichlorohydrin and Polyvinyl Alcohol for Acid Recovery by Diffusion Dialysis. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Yifei Gong
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| | - Wei Chen
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| | - Hai Yang Shen
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| | - Congliang Cheng
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| |
Collapse
|
4
|
Clemens AL, Jayathilake BS, Karnes JJ, Schwartz JJ, Baker SE, Duoss EB, Oakdale JS. Tuning Alkaline Anion Exchange Membranes through Crosslinking: A Review of Synthetic Strategies and Property Relationships. Polymers (Basel) 2023; 15:polym15061534. [PMID: 36987313 PMCID: PMC10051716 DOI: 10.3390/polym15061534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO2 electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.
Collapse
Affiliation(s)
- Auston L. Clemens
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| | | | - John J. Karnes
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Johanna J. Schwartz
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sarah E. Baker
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Eric B. Duoss
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - James S. Oakdale
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| |
Collapse
|
5
|
Zhou H, Ju P, Hu S, Shi L, Yuan W, Chen D, Wang Y, Shi S. Separation of Hydrochloric Acid and Oxalic Acid from Rare Earth Oxalic Acid Precipitation Mother Liquor by Electrodialysis. MEMBRANES 2023; 13:162. [PMID: 36837666 PMCID: PMC9964671 DOI: 10.3390/membranes13020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, the hydrochloric acid from rare earth oxalic acid precipitation mother liquor was separated by electrodialysis (ED) with different anion exchange membranes, including selective anion exchange membrane (SAEM), polymer alloy anion exchange membrane (PAAEM), and homogenous anion exchange membrane (HAEM). In addition to actual wastewater, nine types of simulated solutions with different concentrations of hydrochloric acid and oxalic acid were used in the experiments. The results indicated that the hydrochloric acid could be separated effectively by electrodialysis with SAEM from simulated and real rare earth oxalic acid precipitation mother liquor under the operating voltage 15 V and ampere 2.2 A, in which the hydrochloric acid obtained in the concentrate chamber of ED is of higher purity (>91.5%) generally. It was found that the separation effect of the two acids was related to the concentrations and molar ratios of hydrochloric acid and oxalic acid contained in their mixtures. The SEM images and ESD-mapping analyses indicated that membrane fouling appeared on the surface of ACS and CSE at the diluted side of the ED membrane stack when electrodialysis was used to treat the real rare earth oxalic acid precipitation mother liquor. Fe, Yb, Al, and Dy were found in the CSE membrane section, and organic compounds containing carbon and sulfur were attached to the surface of the ACS. The results also indicated that the real rare earth precipitation mother liquor needed to be pretreated before the separation of hydrochloric acid and oxalic acid by electrodialysis.
Collapse
Affiliation(s)
- Hengcheng Zhou
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Peihai Ju
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Shaowei Hu
- Technology Center of Angang Steel Co., Ltd., Anshan 114009, China
| | - Lili Shi
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Dongdong Chen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Yujie Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaoyuan Shi
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Patnaik P, Sarkar S, Pal S, Chatterjee U. Cu(I) catalyzed ATRP for the preparation of high-performance poly (vinylidene fluoride)-g-poly 2-(dimethylamino)ethyl methacrylate crosslinked anion exchange membranes for enhanced acid recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Das A, Pal S, Jewrajka SK. Physical, Electrochemical, and Solvent Permeation Properties of Amphiphilic Conetwork Membranes Formed through Interlinking of Poly(vinylidene fluoride)- Graft-Poly[(2-dimethylamino)ethyl Methacrylate] with Telechelic Poly(ethylene glycol) and Small Molecular Weight Cross-Linkers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15340-15352. [PMID: 36459173 DOI: 10.1021/acs.langmuir.2c02553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report the preparation of dense and porous amphiphilic conetwork (APCN) membranes through the covalent interconnection of poly(vinylidene fluoride)-graft-poly[(2-dimethylamino)ethyl methacrylate] (PVDF-g-PDMAEMA) copolymers with telechelic poly(ethylene glycol) (PEG) or α,α-dichloro-p-xylene (XDC). The dense APCN membranes exhibit varying solvent swelling and mechanical properties depending on the compositions and overall crystallinity. The crystallinity of both PVDF (20-47%) and PEG (9-17%) is significantly suppressed in the dense APCNs prepared through the interconnection of PVDF-g-PDMAEMA with reactive PEG as compared to the APCN membranes (48-53%) prepared with XDC as well as mechanical blend of PVDF-g-PDMAEMA plus nonreactive PEG. The dense APCN membranes exhibit a good transport number of monovalent ions and ionic conductivity. The APCN membrane interconnected with PEG and containing binary ionic liquids exhibits a room-temperature lithium ion conductivity of 0.52 mS/cm. On the other hand, APCN ultrafiltration (UF) membranes exhibit organic solvent-resistant behavior. The UF membrane obtained by interconnecting PVDF-g-PDMAEMA with telechelic PEG shows low protein fouling propensity, higher hydrophilicity, and water flux as compared to membranes prepared using XDC as the interconnecting agent. The significant effect of the covalent interconnection of the amphiphilic graft copolymers with telechelic PEG or XDC on the overall properties provides a good opportunity to modulate the properties and performance of APCN membranes.
Collapse
Affiliation(s)
- Anupam Das
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana500046, India
| | - Sandip Pal
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| |
Collapse
|
8
|
Investigation on flexible and thermally crosslinked bis-piperidinium-PPO anion exchange membrane (AEM) for electro-kinetic desalination and acid recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Liu B, Li T, Li Q, Zhu S, Duan Y, Li J, Zhang H, Zhao C. Enhanced diffusion dialysis performance of cross-linked poly(aryl piperidine) anion exchange membranes by thiol-ene click chemistry for acid recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhao Z, Li X, Zhang H, Sheng F, Xu T, Zhu Y, Zhang H, Ge L, Xu T. Polyamide-Based Electronanofiltration Membranes for Efficient Anion Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hao Zhang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, People’s Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
12
|
Cao R, Tang P, Yang X, Sun Z. DFT-based study on the molecular interaction of hydrochloric acid with different extractants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Selective recovery of carboxylic acid through PVDF blended anion exchange membranes using electrodialysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Nagarale R, Bavdane PP, Sreenath S, Pawar CM, Dave V, Satpati AK. Polyaniline derivatized anion exchange membrane for acid recovery. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Pawar CM, Sreenath S, Dave V, Bavdane PP, Singh V, Verma V, Nagarale RK. Chemically stable and high acid recovery anion exchange membrane. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Merkel A, Čopák L, Golubenko D, Dvořák L, Vavro M, Yaroslavtsev A, Šeda L. Recovery of Hydrochloric Acid from Industrial Wastewater by Diffusion Dialysis Using a Spiral-Wound Module. Int J Mol Sci 2022; 23:ijms23116212. [PMID: 35682891 PMCID: PMC9181085 DOI: 10.3390/ijms23116212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
In the present study, the possibility of using a spiral-wound diffusion dialysis module was studied for the separation of hydrochloric acid and Zn2+, Ni2+, Cr3+, and Fe2+ salts. Diffusion dialysis recovered 68% of free HCl from the spent pickling solution contaminated with heavy-metal-ion salts. A higher volumetric flowrate of the stripping medium recovered a more significant portion of free acid, namely, 77%. Transition metals (Fe, Ni, Cr) apart from Zn were rejected by >85%. Low retention of Zn (35%) relates to the diffusion of negatively charged chloro complexes through the anion-exchange membrane. The mechanical and transport properties of dialysis FAD-PET membrane under accelerated degradation conditions was investigated. Long-term tests coupled with the economic study have verified that diffusion dialysis is a suitable method for the treatment of spent acids, the salts of which are well soluble in water. Calculations predict significant annual OPEX savings, approximately up to 58%, favouring diffusion dialysis for implementation into wastewater management.
Collapse
Affiliation(s)
- Arthur Merkel
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Ladislav Čopák
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Daniil Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia; (D.G.); (A.Y.)
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
| | - Matej Vavro
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia; (D.G.); (A.Y.)
| | - Libor Šeda
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
| |
Collapse
|
17
|
Chen Q, Yao Y, Liao J, Li J, Xu J, Wang T, Tang Y, Xu Y, Ruan H, Shen J. Subnanometer Ion Channel Anion Exchange Membranes Having a Rigid Benzimidazole Structure for Selective Anion Separation. ACS NANO 2022; 16:4629-4641. [PMID: 35226457 DOI: 10.1021/acsnano.1c11264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-conductive polymers having a well-defined phase-separated structure show the potential application of separating mono- and bivalent ion separation. In this work, three side-chain-type poly(arylene ether sulfone)-based anion exchange membranes (AEMs) have been fabricated to investigate the effect of the stiffness of the polymer backbone within AEMs on the Cl-/NO3- and Cl-/SO42- separation performance. Our investigations via small-angle X-ray scattering (SAXS), positron annihilation, and differential scanning calorimetry (DSC) demonstrate that the as-prepared AEM with a rigid benzimidazole structure in the backbone bears subnanometer ion channels resulting from the arrangement of the rigid polymer backbone. In particular, SAXS results demonstrate that the rigid benzimidazole-containing AEM in the wet state has an ion cluster size of 0.548 nm, which is smaller than that of an AEM with alkyl segments in the backbone (0.760 nm). Thus, in the electrodialysis (ED) process, the former exhibits a superior capacity of separating Cl-/SO42- ions relative to latter. Nevertheless, the benzimidazole-containing AEM shows an inability to separate the Cl-/NO3- ions, which is possibly due to the similar ion size of the two. The higher rotational energy barrier (4.3 × 10-3 Hartree) of benzimidazole units and the smaller polymer matrix free-volume (0.636%) in the AEM significantly contribute to the construction of smaller ion channels. As a result, it is believed that the rigid benzimidazole structure of this kind is a benefit to the construction of stable subnanometer ion channels in the AEM that can selectively separate ions with different sizes.
Collapse
Affiliation(s)
- Quan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tongtong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Tang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
18
|
Liu B, Duan Y, Li T, Li J, Zhang H, Zhao C. Nanostructured anion exchange membranes based on poly(arylene piperidinium) with bis-cation strings for diffusion dialysis in acid recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Goel P, E. B, Mandal P, Shahi VK, Bandyopadhyay A, Chattopadhyay S. Di-quaternized graphene oxide based multi-cationic cross-linked monovalent selective anion exchange membrane for electrodialysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Gong F, Fan Z, Xia W, Zhang M, Wang L, Wang X, Chen X. N-cyclic cationic group-functionalized cardo poly(arylene ether sulfone)s membranes with ultrahigh selectivity for diffusion dialysis in acid recovery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|