1
|
Wang H, Wang R, Xu M, Dai X, Dai J. Zwitterionic-enhanced hyperbranched polysiloxane membrane with advanced anti-crude oil fouling for high-efficient oil-in-water emulsion separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125391. [PMID: 40250181 DOI: 10.1016/j.jenvman.2025.125391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/30/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Membrane fouling, attributed to the adhesion of oil droplets, presents a significant challenge to membrane separation technology. The hydrophilic surface modification of polymer membranes has been proven as an effective antifouling strategy. Here, a novel zwitterionic hyperbranched polysiloxane modificated membrane (ZHBPSi@PDA@M) was synthesized through oxidative self-polymerization to form the polydopamine (PDA) adhesion layer, Michael addition, and ring-opening reaction. The surface of ZHBPSi@PDA@M achieved the superhydrophilic modification, acquiring an underwater oil contact angle of 158.6°. Furthermore, the membrane had a high water permeance of 13,924 L m-2 h-1 bar-1, representing a 29-fold increase compared to the nascent membrane, and achieved excellent separation of various oil-in-water emulsions, with permeance and rejection efficiency of 5534 L m-2 h-1 bar-1 and 99.9 %, respectively. Additionally, the ZHBPSi@PDA@M not only achieved excellent acid-base stability, but also possessed good self-cleaning and anti-fouling properties. Moreover, the composite membrane effectively separated crude oil emulsions, achieving a permeance of 3986 L m-2 h-1 bar-1 and a separation efficiency of 98.3 %, thereby offering a novel approach for the treatment of high-viscosity oil-containing wastewater.
Collapse
Affiliation(s)
- Hongren Wang
- Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, 136000, China; College of Mathematics and Computer, Jilin Normal University, Siping, 136000, China
| | - Ruifang Wang
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013, China
| | - Man Xu
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaohui Dai
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013, China.
| | - Jiangdong Dai
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Jia J, Xu D, Yang J, Lin D, Hu L, Jin W, Wang J, Gong W, Li G, Liang H. Impact of residual aluminum on nanofiltration gypsum scaling: Mitigation roles played by different species. WATER RESEARCH 2025; 274:123106. [PMID: 39817963 DOI: 10.1016/j.watres.2025.123106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Residual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl3-, Al13, and Al30-) membranes. The morphology of gypsum, the role of Al species on Ca2+ adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated. Results indicated that Al-conditioned membranes had lower flux decline than the bare membrane, with the order of AlCl3-
Collapse
Affiliation(s)
- Jinjin Jia
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dachao Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Longfeng Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wenxing Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin, 150030, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
3
|
Guan YF, Hong XY, Karanikola V, Wang Z, Pan W, Wu HA, Wang FC, Yu HQ, Elimelech M. Gypsum heterogenous nucleation pathways regulated by surface functional groups and hydrophobicity. Nat Commun 2025; 16:713. [PMID: 39820035 PMCID: PMC11739488 DOI: 10.1038/s41467-025-55993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Gypsum (CaSO4·2H2O) plays a critical role in numerous natural and industrial processes. Nevertheless, the underlying mechanisms governing the formation of gypsum crystals on surfaces with diverse chemical properties remain poorly understood due to a lack of sufficient temporal-spatial resolution. Herein, we use in situ microscopy to investigate the real-time gypsum nucleation on self-assembled monolayers (SAMs) terminated with -CH3, -hybrid (a combination of NH2 and COOH), -COOH, -SO3, -NH3, and -OH functional groups. We report that the rate of gypsum formation is regulated by the surface functional groups and hydrophobicity, in the order of -CH3 > -hybrid > -COOH > -SO3 ≈ - NH3 > - OH. Results based on classical nucleation theory and molecular dynamics simulations reveal that nucleation pathways for hydrophilic surfaces involve surface-induced nucleation, with ion adsorption sites (i.e., functional groups) serving as anchors to facilitate the growth of vertically oriented clusters. Conversely, hydrophobic surfaces involve bulk nucleation with ions near the surface that coalesce into larger horizontal clusters. These findings provide new insights into the spatial and temporal characteristics of gypsum formation on various surfaces and highlight the significance of surface functional groups and hydrophobicity in governing gypsum formation mechanisms, while also acknowledging the possibility of alternative nucleation pathways due to the limitations of experimental techniques.
Collapse
Affiliation(s)
- Yan-Fang Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Engineering, University of Science & Technology of China, Hefei, China
| | - Xiang-Yu Hong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Vasiliki Karanikola
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Zhangxin Wang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Weiyi Pan
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Feng-Chao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Engineering, University of Science & Technology of China, Hefei, China.
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Xiang W, Wang X, Zhang M, Aderibigbe AD, Wang F, Zhao Z, Fan Y, Huey BD, McCutcheon JR, Li B. Continuous Monitoring of Lithium Ions in Lithium-Rich Brine Using Ion Selective Electrode Sensors Modified with Polyelectrolyte Multilayers of Poly(allylamine hydrochloride)/Poly(sodium 4-styrenesulfonate). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22442-22455. [PMID: 39626215 DOI: 10.1021/acs.est.4c07155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Monitoring lithium ions (Li+) in lithium-rich brine (LrB) is critical for metal recovery, yet challenges such as high ionic strength and gypsum-induced surface deterioration hinder the performance of potentiometric ion-selective electrode (ISE) sensors. This study advances the functionality of Li+ ISE sensors and enables continuous monitoring of Li+ concentration in LrB by introducing apolyelectrolyte multilayer (PEM) of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (PAH/PSS) that serves as an antigypsum scaling material to minimize nucleation on the sensor surface. With 5.5 bilayers of PAH/PSS coating, the Li+ ISE sensors possess a high Nernst slope (59.14 mV/dec), rapid response (<10 s), and superior selectivity against competitive ions (Na+, log Ks = -2.35; K+, log Ks = -2.47; Ca2+, log Ks = -4.05; Mg2+, log Ks = -4.18). The impedance (85.1 kΩ) of (PAH/PSS)5.5-coated sensors is 1 order of magnitude lower than that of electrospray ion-selective membrane (E-ISM) Li+ sensors (830 kΩ), attributed to the ultrathin (45.3 nm) and highly dielectric PAH/PSS bilayers. During a 15-day continuous monitoring test in LrB, the (PAH/PSS)5.5-coated Li+ ISE sensors with their superhydrophilic and smooth surface diminish nucleation sites for scaling agents (e.g., Ca2+ and SO42-) and consequently mitigate gypsum scaling. Moreover, a brine-tailored denoising data processing algorithm (bt-DDPA), coupled with the salinity-adjusted mathematical model with Lagrange interpolation, effectively captures Li+ fluctuation by filtering out anomalies and reducing sensor drift in brine. Bt-DDPA alleviates the discrepancy between the sensor readings and the lab-based validation results by 46.06%. This study demonstrates that the integration of material advancement (PAH/PSS coating) with sensor data processing (bt-DDPA) bolsters continuous and accurate Li+ monitoring in LrB, crucial for brine water treatment and resource recovery.
Collapse
Affiliation(s)
- Wenjun Xiang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mi Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abiodun D Aderibigbe
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Fei Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhiyuan Zhao
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bryan D Huey
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey R McCutcheon
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Park S, Liu X, Li T, Livingston JL, Zhang J, Tong T. Protein-Decorated Reverse Osmosis Membranes with High Gypsum Scaling Resistance. ACS ENVIRONMENTAL AU 2024; 4:333-343. [PMID: 39582761 PMCID: PMC11583097 DOI: 10.1021/acsenvironau.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/26/2024]
Abstract
The global challenge of water scarcity has fueled significant interest in membrane desalination, particularly reverse osmosis (RO), for producing fresh water from various unconventional sources. However, mineral scaling remains a critical issue that compromises the membrane efficiency and lifespan. This study explores the use of naturally occurring proteins to develop scaling-resistant RO membranes through an eco-friendly modification method. We systematically evaluate three protein modification techniques, namely, polydopamine (PDA)-assisted coating, protein conditioning, and protein drying, for fabricating membranes resistant to gypsum scaling. Protein conditioning is found to be the most effective approach, resulting in protein-decorated membranes with an exceptional resistance to gypsum scaling. We also demonstrate that a hydrated protein layer is essential for optimal scaling resistance. To further understand the mechanism underlying the scaling resistance of protein-decorated membranes, five proteins (i.e., bovine serum albumin, casein, lactalbumin, lysozyme, and protamine) with distinct physicochemical properties are used to explore the key factors governing membrane scaling resistance. The results of dynamic RO experiments indicate that the molecular weight of proteins plays a crucial role, with higher molecular weights leading to higher membrane scaling resistance through steric effects. However, static experiments of bulk crystallization highlight the importance of electrostatic interactions, where proteins with more negative charge delay gypsum crystallization more effectively. These findings suggest the difference between gypsum scaling in the RO and gypsum crystallization in bulk solutions. Overall, this research offers a novel approach to developing resilient and sustainable RO membranes for the desalination of feedwater with high scaling potential while elucidating mechanistic insights on the mitigating effects of protein on gypsum scaling.
Collapse
Affiliation(s)
- Shinyun Park
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Xitong Liu
- Department
of Civil and Environmental Engineering, George Washington University, Washington, D. C. 20052, United States
| | - Tianshu Li
- Department
of Civil and Environmental Engineering, George Washington University, Washington, D. C. 20052, United States
| | - Joshua L. Livingston
- Department
of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jin Zhang
- Department
of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Tiezheng Tong
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Wang M, Zuo X, Jacovone RMS, O'Hara R, Mondal AN, Asatekin A, Rodrigues DF. Influence of zwitterionic amphiphilic copolymers on heterogeneous gypsum formation: A promising approach for scaling resistance. WATER RESEARCH 2024; 266:122439. [PMID: 39307081 DOI: 10.1016/j.watres.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024]
Abstract
This study aims to investigate the influence of zwitterionic amphiphilic copolymers (ZACs) in the nucleation and growth of heterogeneous CaSO4 at the zwitterion-water interface, which is crucial for the prevention of mineral scaling and consequent downtime or suboptimal performance in industries like membrane desalination, heat exchangers, and pipeline transportation. In situ grazing incidence small angle X-ray Scattering (GISAXS), and quartz crystal microbalance with dissipation (QCM-D) techniques were used to analyze the evolution of CaSO4 particles on two new ZAC coatings: poly-(trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA, or PT:SBMA) and poly(trifluoroethyl methacrylate-random-2-methacryloyloxyethyl phosphorylcholine) (PTFEMA-r-MPC, or PT:MPC). The results showed that PT:MPC coatings promoted nucleation but inhibited crystal growth, resulting in slower overall reaction kinetics on PT:MPC coatings compared to PT:SBMA coatings. Interfacial interactions involving the substrates, sulfate minerals, and ions were examined, revealing that calcium ion adsorption, primarily governed by electrostatic attraction, played a crucial role in the nucleation and growth processes on both ZAC coatings. The crystal characterization revealed a phase transition from bassanite to gypsum on both ZAC coatings, suggesting that these zwitterionic materials can influence the mineral phase of heterogeneously formed CaSO4 crystals. These findings enhance our understanding of the fundamental mechanisms underlying heterogeneous CaSO4 scaling in the presence of zwitterionic materials.
Collapse
Affiliation(s)
- Meng Wang
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Raynara M S Jacovone
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Ryan O'Hara
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Abhishek Narayan Mondal
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Debora F Rodrigues
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, 29634, USA.
| |
Collapse
|
7
|
Ziemann E, Coves T, Oren YS, Maman N, Sharon-Gojman R, Neklyudov V, Freger V, Ramon GZ, Bernstein R. Pseudo-bottle-brush decorated thin-film composite desalination membranes with ultrahigh mineral scale resistance. SCIENCE ADVANCES 2024; 10:eadm7668. [PMID: 38781328 PMCID: PMC11114193 DOI: 10.1126/sciadv.adm7668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
High water recovery is crucial to inland desalination but is impeded by mineral scaling of the membrane. This work presents a two-step modification approach for grafting high-density zwitterionic pseudo-bottle-brushes to polyamide reverse osmosis membranes to prevent scaling during high-recovery desalination of brackish water. Increasing brush density, induced by increasing reaction time, correlated with reduced scaling. High-density grafting eliminated gypsum scaling and almost completely prevented silica scaling during desalination of synthetic brackish water at a recovery ratio of 80%. Moreover, scaling was effectively mitigated during long-term desalination of real brackish water at a recovery ratio of 90% without pretreatment or antiscalants. Molecular dynamics simulations reveal the critical dependence of the membrane's silica antiscaling ability on the degree to which the coating screens the membrane surface from readily forming silica aggregates. This finding highlights the importance of maximizing grafting density for optimal performance and advanced antiscaling properties to allow high-recovery desalination of complex salt solutions.
Collapse
Affiliation(s)
- Eric Ziemann
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Tali Coves
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Yaeli S. Oren
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Nitzan Maman
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Revital Sharon-Gojman
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Vadim Neklyudov
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Grand Water Research Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Guy Z. Ramon
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Grand Water Research Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Department of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Roy Bernstein
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
8
|
Khanzada NK, Rehman S, Kharraz JA, Farid MU, Khatri M, Hilal N, An AK. Reverse osmosis membrane functionalized with aminated graphene oxide and polydopamine nanospheres plugging for enhanced NDMA rejection and anti-fouling performance. CHEMOSPHERE 2023; 338:139557. [PMID: 37478994 DOI: 10.1016/j.chemosphere.2023.139557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
The use of reverse osmosis (RO) for water reclamation has become an essential part of the water supply owing to the ever-increasing water demand and the utmost performance of the RO membranes. Despite the global RO implementation, its inferior rejection against low molecular weight contaminants of emerging concerns (CECs) (i.e., N-nitrosodimethylamine (NDMA)) and propensity to fouling remain bottle-neck thus affecting process robustness for water reuse. This study aims to enhance both the rejection and antifouling properties of the RO membrane. Herein for the first time, we report RO membrane modification using polydopamine nanospheres (PDAns) followed by aminated-graphene oxide (AGO) deposition as an effective approach to overcome these challenges. The modification of the RO membrane using PDAns-AGO resulted in 89.3 ± 2.7% rejection compared to the pristine RO membrane which demonstrated 69.2 ± 2.1% NDMA rejection. This significant improvement can be ascribed to the plugging and shielding of defective areas (formed during interfacial polymerization) of the polyamide layer through active PDAns and AGO layers and to the added sieving mechanism that arose through narrow channels of the AGO owing to its reduction. Moreover, the in-situ and non-destructive fouling monitoring using optical coherence tomography (OCT) revealed that the PDAns-AGO coating enhanced both the anti-scaling and anti-biofouling characteristics. The improved hydrophilicity and bactericidal effect together with roughness and surface charge suppression synergistically enhanced anti-fouling properties. This study provides a new direction for safe and cost-effective water reuse practices. The membrane with high selectivity against CECs such as NDMA has the potential to eliminate permeate staging using second pass RO and other advanced oxidation processes which are utilized as a tertiary treatment to make reclaimed water suitable for potable/non-potable application.
Collapse
Affiliation(s)
- Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Shazia Rehman
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muzamil Khatri
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Lu KG, Ma S, Hua D, Liu H, Li C, Song J, Huang H, Qin Y. Silica mitigated calcium mineral scaling in brackish water reverse osmosis. WATER RESEARCH 2023; 243:120428. [PMID: 37536247 DOI: 10.1016/j.watres.2023.120428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Although the autopsies of reverse osmosis (RO) membranes from full-scale, brackish water desalination plants identify the co-presence of silica and Ca-based minerals in scaling layers, minimal research exists on their formation process and mechanisms. Therefore, combined scaling by silica and either gypsum (non-alkaline) or amorphous calcium phosphate (ACP, alkaline) was investigated in this study for their distinctive impacts on membrane performance. The obtained results demonstrate that the coexistence of silica and Ca-based mineral salts in feedwaters significantly reduced water flux decline as compared to single type of Ca-based mineral salts. This antagonistic effect was primarily attributed to the silica-mediated alleviation of Ca-based mineral scaling. In the presence of silica, silica skins were immediately established around Ca-based mineral precipitates once they emerged. Sheathing by the siliceous skins hindered the aggregation and thus the morphological evolution of Ca-based mineral species. Unlike sulfate precipitates, ACP precipitates can induce the formation of dense and thick silica skins via an additional condensation reaction. Such a phenomenon rationalized the notion concerning a stronger mitigating effect of silica on ACP scaling than gypsum scaling. Meanwhile, coating by silica skins altered the surface chemistries of Ca-based mineral precipitates, which should be fully considered in regulating membrane surface properties for combined scaling control. Our findings advance the mechanistic understanding on combined mineral scaling of RO membranes, and may guide the appropriate design of membrane surface properties for scaling-resistant membrane tailored to brackish water desalination.
Collapse
Affiliation(s)
- Kai-Ge Lu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory for Water and Sediment Science, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Shuanglong Ma
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Chang Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Jia Song
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiou Huang
- Key Laboratory for Water and Sediment Science, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China; Department of Environmental Health and Engineering, The John Hopkins University, 615 North Wolfe Street, MD 21205, USA.
| | - Yuchen Qin
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Thomas E, Lee JS, Shokrollahzadeh Behbahani H, Nazari A, Li Y, Yang Y, Green MD, Lind ML. Zwitterionic Copolymers for Anti-Scaling Applications in Simulated Spaceflight Wastewater Scenarios. ACS OMEGA 2023; 8:18462-18471. [PMID: 37273630 PMCID: PMC10233662 DOI: 10.1021/acsomega.2c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/26/2023] [Indexed: 06/06/2023]
Abstract
Water reclamation in spaceflight applications, such as those encountered on the International Space Station (ISS), requires complex engineering solutions to ensure maximum water recovery. Current vapor compression distillation (VCD) technologies are effective but produce highly concentrated brines and often cause scaling within a separation system. This work evaluates initial steps toward integrating pervaporation, a membrane separation process, as a brine management strategy for ISS wastewaters. Pervaporation performs separations driven by a chemical potential difference across the membrane created by either a sweep gas or a vacuum pull. Pervaporation membranes, as with most membrane processes, can be subject to scaling. Therefore, this work studies the anti-scaling properties of zwitterions (polymeric molecules with covalently tethered positive and negative ions) coated onto sulfonated pentablock terpolymer block polymer (Nexar) pervaporation membrane surfaces. We report a method for applying zwitterions to the surface of pervaporation membranes and the effect on performance parameters such as flux and scaling resistance. Membranes with zwitterions had up to 53% reduction in permeance but reduced scaling. The highest amount of scaling occurred in the samples exposed to calcium chloride, and uncoated membranes had weight percent increases as high as 1617 ± 241%, whereas zwitterion-coated membranes experienced only about 317 ± 87% weight increase in the presence of the same scalant.
Collapse
Affiliation(s)
- Elisabeth
R. Thomas
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- NSF
Nanosystems Engineering Research Center Nanotechnology-Enabled Water
Treatment, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jae Sang Lee
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Ani Nazari
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Yusi Li
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- NSF
Nanosystems Engineering Research Center Nanotechnology-Enabled Water
Treatment, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yi Yang
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthew D. Green
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Mary Laura Lind
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- NSF
Nanosystems Engineering Research Center Nanotechnology-Enabled Water
Treatment, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
12
|
Multi-carboxyl based zwitterionic nanofiltration membrane with ion selectivity and anti-scaling performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
13
|
Hu Q, Yuan Y, Wu Z, Lu H, Li N, Zhang H. The effect of surficial function groups on the anti-fouling and anti-scaling performance of thin-film composite reverse osmosis membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Gao J, Liu J, Liu L, Dong J, Zhao X, Pan J. Multiple Interface Reactions Enabled Zwitterionic Polyamide Composite Reverse Osmosis Membrane for Enhanced Permeability and Antifouling Property. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Jialin Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Lingling Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Jiajing Dong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Xueting Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Jiefeng Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| |
Collapse
|
15
|
Chen Y, Cohen Y. Calcium Sulfate and Calcium Carbonate Scaling of Thin-Film Composite Polyamide Reverse Osmosis Membranes with Surface-Tethered Polyacrylic Acid Chains. MEMBRANES 2022; 12:1287. [PMID: 36557193 PMCID: PMC9783167 DOI: 10.3390/membranes12121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The gypsum and calcite scaling propensities of the thin-film composite polyamide (PA-TFC) reverse osmosis (RO) membrane, modified with a tethered surface layer of polyacrylic acid (PAA) chains, was evaluated and compared to the scaling of selected commercial RO membranes. The tethered PAA layer was synthesized onto a commercial polyamide membrane (i.e., base-PA) via atmospheric pressure plasma-induced graft polymerization (APPIGP). The PAA nano-structured (SNS) base-PA membrane (SNS-PAA-PA) was scaled to a lesser degree, as quantified by a lower permeate flux decline and surface imaging, relative to the tested commercial membranes (Dow SW30, Toray SWRO, and BWRO). The cleaning of gypsum-scaled membranes with D.I. water flushing achieved 100% water permeability recovery for both the SNS-PAA-PA and Dow SW30 membranes, relative to 92-98% permeability restoration for the Toray membranes. The calcium carbonate scaling of SNS-PAA-PA membranes was also lower relative to the commercial membranes, but permeability recovery after D.I. water cleaning was somewhat lower (94%) but consistent with the level of surface scale coverage. In contrast, the calcite and gypsum-scaled membrane areas of the commercial membranes post-cleaning were significantly higher than for the SNS-PAA-PA membrane but with 100% permeability recovery, suggesting the potential for membrane damage when mineral scaling is severe.
Collapse
Affiliation(s)
- Yian Chen
- Water Technology Research Center, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
- Renewable Resources & Enabling Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yoram Cohen
- Water Technology Research Center, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Yin Y, Li T, Zuo K, Liu X, Lin S, Yao Y, Tong T. Which Surface Is More Scaling Resistant? A Closer Look at Nucleation Theories for Heterogeneous Gypsum Nucleation in Aqueous Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16315-16324. [PMID: 36305705 DOI: 10.1021/acs.est.2c06560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing engineered surfaces with scaling resistance is an effective means to inhibit surface-mediated mineral scaling in various industries including desalination. However, contrasting results have been reported on the relationship between scaling potential and surface hydrophilicity. In this study, we combine a theoretical analysis with experimental investigation to clarify the effect of surface wetting property on heterogeneous gypsum (CaSO4·2H2O) formation on surfaces immersed in aqueous solutions. Theoretical prediction derived from classical nucleation theory (CNT) indicates that an increase of surface hydrophobicity reduces scaling potential, which contrasts our experimental results that more hydrophilic surfaces are less prone to gypsum scaling. We further consider the possibility of nonclassical pathway of gypsum nucleation, which proceeds by the aggregation of precursor clusters of CaSO4. Accordingly, we investigate the affinity of CaSO4 to substrate surfaces of varied wetting properties via calculating the total free energy of interaction, with the results perfectly predicting experimental observations of surface scaling propensity. This indicates that the interactions between precursor clusters of CaSO4 and substrate surfaces might play an important role in regulating heterogeneous gypsum formation. Our findings provide evidence that CNT might not be applicable to describing gypsum scaling in aqueous solutions. The fundamental insights we reveal on gypsum scaling mechanisms have the potential to guide rational design of scaling-resistant engineered surfaces.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado80523, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, District of Columbia20052, United States
| | - Kuichang Zuo
- The Key Laboratory of Water and Sediment Science, Ministry of Education; College of Environment Science and Engineering, Peking University, Beijing100871, China
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, District of Columbia20052, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee37212, United States
| | - Yiqun Yao
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado80523, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado80523, United States
| |
Collapse
|
17
|
Verma N, Chen L, Fu Q, Wu S, Hsiao BS. Ionic Liquid-Mediated Interfacial Polymerization for Fabrication of Reverse Osmosis Membranes. MEMBRANES 2022; 12:1081. [PMID: 36363636 PMCID: PMC9696625 DOI: 10.3390/membranes12111081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
This study revealed the effects of incorporating ionic liquid (IL) molecules: 1-ethyl, 1-butyl, and 1-octyl-3-methyl-imidazolium chlorides with different alkyl chain lengths, in interfacial polymerization (IP) on the structure and property (i.e., permeate-flux and salt rejection ratio) relationships of resulting RO membranes. The IL additive was added in the aqueous meta-phenylene diamine (MPD; 0.1% w/v) phase, which was subsequently reacted with trimesoyl chloride (TMC; 0.004% w/v) in the hexane phase to produce polyamide (PA) barrier layer. The structure of resulting free-standing PA thin films was characterized by grazing incidence wide-angle X-rays scattering (GIWAXS), which results were correlated with the performance of thin-film composite RO membranes having PA barrier layers prepared under the same IP conditions. Additionally, the membrane surface properties were characterized by zeta potential and water contact angle measurements. It was found that the membrane prepared by the longer chain IL molecule generally showed lower salt rejection ratio and higher permeation flux, possibly due to the inclusion of IL molecules in the PA scaffold. This hypothesis was supported by the GIWAXS results, where a self-assembled surfactant-like structure formed by IL with the longest aliphatic chain length was detected.
Collapse
Affiliation(s)
- Nisha Verma
- Correspondence: (N.V.); (B.S.H.); Tel.: +1-631-632-7793 (B.S.H.)
| | | | | | | | | |
Collapse
|
18
|
Regev C, Jiang Z, Kasher R, Miller Y. Distinct Antifouling Mechanisms on Different Chain Densities of Zwitterionic Polymers. Molecules 2022; 27:7394. [PMID: 36364221 PMCID: PMC9654173 DOI: 10.3390/molecules27217394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Antifouling polymer coating surfaces are used in widespread industries applications. Zwitterionic polymers have been identified as promising materials in developing polymer coating surfaces. Importantly, the density of the polymer chains is crucial for acquiring superior antifouling performance. This study introduces two different zwitterionic polymer density surfaces by applying molecular modeling tools. To assess the antifouling performance, we mimic static adsorption test, by placing the foulant model bovine serum albumin (BSA) on the surfaces. Our findings show that not only the density of the polymer chain affect antifouling performance, but also the initial orientation of the BSA on the surface. Moreover, at a high-density surface, the foulant either detaches from the surface or anchor on the surface. At low-density surface, the foulant does not detach from the surface, but either penetrates or anchors on the surface. The anchoring and the penetrating mechanisms are elucidated by the electrostatic interactions between the foulant and the surface. While the positively charged ammonium groups of the polymer play major role in the interactions with the negatively charged amino acids of the BSA, in the penetrating mechanism the ammonium groups play minor role in the interactions with the contact with the foulant. The sulfonate groups of the polymer pull the foulant in the penetrating mechanism. Our work supports the design of a high-density polymer chain surface coating to prevent fouling phenomenon. Our study provides for the first-time insights into the molecular mechanism by probing the interactions between BSA and the zwitterion surface, while testing high- and low-densities polymer chains.
Collapse
Affiliation(s)
- Clil Regev
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be’er Sheva 84105, Israel
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be’er Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel
| |
Collapse
|
19
|
Cao Z, Hu Y, Zhao H, Cao B, Zhang P. Sulfate mineral scaling: From fundamental mechanisms to control strategies. WATER RESEARCH 2022; 222:118945. [PMID: 35963137 DOI: 10.1016/j.watres.2022.118945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Sulfate scaling, as insoluble inorganic sulfate deposits, can cause serious operational problems in various industries, such as blockage of membrane pores and subsurface media and impairment of equipment functionality. There is limited article to bridge sulfate formation mechanisms with field scaling control practice. This article reviews the molecular-level interfacial reactions and thermodynamic basis controlling homogeneous and heterogeneous sulfate mineral nucleation and growth through classical and non-classical pathways. Common sulfate scaling control strategies were also reviewed, including pretreatment, chemical inhibition and surface modification. Furthermore, efforts were made to link the fundamental theories with industrial scale control practices. Effects of common inhibitors on different steps of sulfate formation pathways (i.e., ion pair and cluster formation, nucleation, and growth) were thoroughly discussed. Surface modifications to industrial facilities and membrane units were clarified as controlling either the deposition of homogeneous precipitates or the heterogeneous nucleation. Future research directions in terms of optimizing sulfate chemical inhibitor design and improving surface modifications are also discussed. This article aims to keep the readers abreast of the latest development in mechanistic understanding and control strategies of sulfate scale formation and to bridge knowledge developed in interfacial chemistry with engineering practice.
Collapse
Affiliation(s)
- Zhiqian Cao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR
| | - Yandi Hu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Cao
- KIT Professionals, Inc., Houston, TX, USA
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR.
| |
Collapse
|
20
|
Sessile Drop Method: Critical Analysis and Optimization for Measuring the Contact Angle of an Ion-Exchange Membrane Surface. MEMBRANES 2022; 12:membranes12080765. [PMID: 36005679 PMCID: PMC9412394 DOI: 10.3390/membranes12080765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
The contact angle between a membrane surface and a waterdrop lying on its surface provides important information about the hydrophilicity/hydrophobicity of the membrane. This method is well-developed for solid non-swelling materials. However, ion-exchange membranes (IEMs) are gel-like solids that swell in liquids. When an IEM is exposed to air, its degree of swelling changes rapidly, making it difficult to measure the contact angle. In this paper, we examine the known experience of measuring contact angles and suggest a simple equipment that allows the membrane to remain swollen during measurements. An optimized protocol makes it possible to obtain reliable and reproducible results. Measuring parameters such as drop size, water dosing speed and others are optimized. Contact angle measurements are shown for a large number of commercial membranes. These data are supplemented with values from other surface characteristics from optical and profilometric measurements.
Collapse
|
21
|
Zaborniak I, Sroka M, Chmielarz P. Lemonade as a rich source of antioxidants: Polymerization of 2-(dimethylamino)ethyl methacrylate in lemon extract. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Rolf J, Cao T, Huang X, Boo C, Li Q, Elimelech M. Inorganic Scaling in Membrane Desalination: Models, Mechanisms, and Characterization Methods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7484-7511. [PMID: 35666637 DOI: 10.1021/acs.est.2c01858] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inorganic scaling caused by precipitation of sparingly soluble salts at supersaturation is a common but critical issue, limiting the efficiency of membrane-based desalination and brine management technologies as well as other engineered systems. A wide range of minerals including calcium carbonate, calcium sulfate, and silica precipitate during membrane-based desalination, limiting water recovery and reducing process efficiency. The economic impact of scaling on desalination processes requires understanding of its sources, causes, effects, and control methods. In this Critical Review, we first describe nucleation mechanisms and crystal growth theories, which are fundamental to understanding inorganic scale formation during membrane desalination. We, then, discuss the key mechanisms and factors that govern membrane scaling, including membrane properties, such as surface roughness, charge, and functionality, as well as feedwater characteristics, such as pH, temperature, and ionic strength. We follow with a critical review of current characterization techniques for both homogeneous and heterogeneous nucleation, focusing on the strengths and limitations of each technique to elucidate scale-inducing mechanisms, observe actual crystal growth, and analyze the outcome of scaling behaviors of desalination membranes. We conclude with an outlook on research needs and future research directions to provide guidelines for scale mitigation in water treatment and desalination.
Collapse
Affiliation(s)
- Julianne Rolf
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06520-8286, United States
| | - Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Xiaochuan Huang
- Department of Civil and Environmental Engineering, Rice University, MS-519, 6100 Main Street, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, MS 6398, 6100 Main Street, Houston 77005, United States
| | - Chanhee Boo
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS-519, 6100 Main Street, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, MS 6398, 6100 Main Street, Houston 77005, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
23
|
Li S, Bai L, Luo X, Ding J, Li G, Liang H. A CNT/PVA film supported TFC membranes for improvement of mechanical properties and chemical cleaning stability: A new insight to an alternative to the polymeric support. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Mussel primed grafted zwitterionic phosphorylcholine based superhydrophilic/underwater superoleophobic antifouling membranes for oil-water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Dong X, Wang X, Xu H, Huang Y, Gao C, Gao X. Mesoporous hollow structural polyaniline-co-polypyrrole nanospheres with amino groups for reverse osmosis membranes with enhanced permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Fouling resistant and performance tunable ultrafiltration membranes via surface graft polymerization induced by atmospheric pressure air plasma. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Gypsum Seeding to Prevent Scaling. CRYSTALS 2022. [DOI: 10.3390/cryst12030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eutectic freeze crystallization (EFC) is a novel separation technique that can be applied to treat brine solutions such as reverse osmosis retentates. These are often a mixture of different inorganic solutes. The treatment of calcium sulphate-rich brines using EFC often results in gypsum crystallization before any other species. This results in gypsum scaling on the cooled surfaces of the crystallizer, which is undesirable as it retards heat transfer rates and hence reduces the yield of other products. The aim of this study was to investigate and understand gypsum crystallization and gypsum scaling in the presence of gypsum seeds. Synthetic brine solutions were used in this research because they allowed an in-depth understanding of the gypsum bulk crystallization process and scaling tendency without the complexity of industrial brines. A cooled, U-shaped stainless-steel tube suspended in the saturated solution was employed as the scaling surface. This was because a tube-shaped surface enabled the introduction of a constant temperature cold surface in the saturated solution and most industrial EFC crystallizers are constructed from stainless steel. Gypsum seeding was effective in decreasing the mass of scale formed on the heat transfer surface. The most effective seed loading was 0.25 g/L, which reduced scale growth rate by 43%. Importantly, this seed loading is six times the theoretical critical seed loading. The seeding strategy also increased the gypsum crystallization kinetics in the bulk solution, which resulted in an increase in the mass of gypsum product. These findings are relevant for the operability and control of EFC processes, which suffer from scaling problems. By using an appropriate seeding strategy, two problems can be alleviated. Firstly, scaling on the heat transfer surface is minimised and, secondly, seeding increases the crystallization kinetics in the bulk solution, which is advantageous for product yield and recovery. It was also recommended that the use of silica as a seed material to prevent gypsum scaling should be investigated in future studies.
Collapse
|
29
|
Yin Y, Kalam S, Livingston JL, Minjarez R, Lee J, Lin S, Tong T. The use of anti-scalants in gypsum scaling mitigation: Comparison with membrane surface modification and efficiency in combined reverse osmosis and membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Wang P, Cheng W, Zhang X, Liu Q, Li J, Ma J, Zhang T. Membrane Scaling and Wetting in Membrane Distillation: Mitigation Roles Played by Humic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3258-3266. [PMID: 35148061 DOI: 10.1021/acs.est.1c07294] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane scaling and wetting severely hinder practical applications of membrane distillation (MD) for hypersaline water/wastewater treatment. In this regard, the effects of feedwater constituents are still not well understood. Herein, we investigated how humic acid (HA) influenced gypsum-induced membrane scaling and wetting during MD desalination. At low concentrations (5-20 mg L-1), HA notably mitigated membrane scaling and wetting. The morphological characterization of scaled membranes revealed that the antiwetting behavior could be ascribed to the formation of a compact and protective gypsum/HA scale layer, which blocked the flow channel of scaling ions and suppressed the intrusion of scale particles into membrane pores. Based on the comprehensive analysis of the scaling process, the formation of the scale layer was related to the heterogeneous crystallization of gypsum on the membrane surface. Moreover, deprotonated HA interfered with the heterogeneous crystallization process by inhibiting the formation of gypsum nuclei and altering the orientation of crystal growth, thus delaying membrane scaling and altering the morphology of the scale layer. Thermodynamic and kinetic analyses further demonstrated the mitigation mechanism of HA. Furthermore, improved fouling reversibility and antiwetting ability in synthetic seawater treatment endowed by HA were observed. This study provides new insight into the roles played by the organic constituents of water/wastewater during membrane desalination, providing a valuable reference for developing novel strategies to improve the performance of MD.
Collapse
Affiliation(s)
- Peizhi Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qianliang Liu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
31
|
Nayak K, Kumar A, Tripathi BP. Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Zhang W, Li N, Zhang X. Surface-engineered sulfonation of ion-selective nanofiltration membrane with robust scaling resistance for seawater desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Ismail MF, Islam MA, Khorshidi B, Tehrani-Bagha A, Sadrzadeh M. Surface characterization of thin-film composite membranes using contact angle technique: Review of quantification strategies and applications. Adv Colloid Interface Sci 2022; 299:102524. [PMID: 34620491 DOI: 10.1016/j.cis.2021.102524] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023]
Abstract
Thin-film composite (TFC) membranes are the most widely used membranes for low-cost and energy-efficient water desalination processes. Proper control over the three influential surface parameters, namely wettability, roughness, and surface charge, is vital in optimizing the TFC membrane surface and permeation properties. More specifically, the surface properties of TFC membranes are often tailored by incorporating novel special wettability materials to increase hydrophilicity and tune surface physicochemical heterogeneity. These essential parameters affect the membrane permeability and antifouling properties. The membrane surface characterization protocols employed to date are rather controversial, and there is no general agreement about the metrics used to evaluate the surface hydrophilicity and physicochemical heterogeneity. In this review, we surveyed and critically evaluated the process that emerged for understanding the membrane surface properties using the simple and economical contact angle analysis technique. Contact angle analysis allows the estimation of surface wettability, surface free energy, surface charge, oleophobicity, contact angle hysteresis, and free energy of interaction; all coordinatively influence the membrane permeation and fouling properties. This review will provide insights into simplifying the evaluation of membrane properties by contact angle analysis that will ultimately expedite the membrane development process by reducing the time and expenses required for the characterization to confirm the success and the impact of any modification.
Collapse
|
34
|
Wang M, Cao B, Hu Y, Rodrigues DF. Mineral Scaling on Reverse Osmosis Membranes: Role of Mass, Orientation, and Crystallinity on Permeability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16110-16119. [PMID: 34788020 DOI: 10.1021/acs.est.1c04143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prior mineral scaling investigations mainly studied the effects of membrane surface properties rather than on the mineral properties and their impact on membrane permeability. In our study, mass, crystal growth orientation, and crystallinity of mineral precipitates on membranes, as well as their effects on membrane permeability have been investigated. Gypsum scaling tests on bare and bovine serum albumin (BSA)-conditioned membranes were conducted under different saturation indices. Results show that a longer scaling period was required for BSA-conditioned membranes to reach the same membrane permeate flux decline as bare membranes. Though the final reduced permeability was the same for both two membranes, the masses of the mineral precipitates on BSA-conditioned membranes were around two times more than those on bare membranes. Further mineral characterizations confirmed that different permeability decay rates of both types of the membrane were attributed to the differences in growth orientations rather than amounts of gypsum precipitates. Moreover, BSA-conditioned layers with high carboxylic density and specific molecular structure could stabilize bassanite and disrupt the oriented growth to inhibit the formation of needle-like gypsum crystals as observed on bare membranes, thus resulting in lower surface coverage with scales on membranes and alleviating the detrimental scaling effect on membrane permeability.
Collapse
Affiliation(s)
- Meng Wang
- Department of Civil and Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Bo Cao
- Department of Civil and Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Yandi Hu
- Department of Civil and Environmental Engineering, University of Houston, Houston, Texas 77004, United States
- Department of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| |
Collapse
|
35
|
Ma W, Lu X, Guan YF, Elimelech M. Joule-Heated Layered Double Hydroxide Sponge for Rapid Removal of Silica from Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16130-16142. [PMID: 34813327 DOI: 10.1021/acs.est.1c05497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dissolved silica is a major concern for a variety of industrial processes owing to its tendency to form complex scales that severely deteriorate system performance. In this work, we present a pretreatment technology using a Joule-heated sponge to rapidly remove silica from saline waters through adsorption, thereby effectively mitigating silica scaling in subsequent membrane desalination processes. The adsorbent sponge is fabricated by functionalizing two-dimensional layered double hydroxide (LDH) nanosheets on a porous, conductive stainless-steel sponge. With the application of an external voltage of 4 V, the Joule-heated sponge achieves 85% silica removal and 95% sponge regeneration within 15 min, which is much more efficient than its counterpart without Joule-heating (360 min for silica adsorption and 90 min for sponge regeneration). Material characterization and reaction kinetics analysis reveal that electrostatic interactions and "memory effect"-induced intercalation are the primary mechanisms for silica removal by the LDH nanosheets. Moreover, Joule-heating reduces the boundary layer resistance on nanosheets and facilitates intraparticle diffusion of dissolved silica, thereby increasing silica removal kinetics. Joule-heating also enhances the release of silicate ions during the regeneration stage through exchange with the surrounding anions (OH- or CO32-), resulting in a more efficient sponge regeneration. Pretreatment of silica-rich feedwaters by the Joule-heated sponge effectively reduces reverse osmosis membrane scaling by amorphous silica scale, demonstrating great potential for silica scaling control in a broad range of engineered processes.
Collapse
Affiliation(s)
- Wen Ma
- Department of Chemical and Environmental Engineering Yale University, New Haven, Connecticut 06520, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Houston, Texas 77005, United States
| | - Xinglin Lu
- Department of Chemical and Environmental Engineering Yale University, New Haven, Connecticut 06520, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Houston, Texas 77005, United States
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Fang Guan
- Department of Chemical and Environmental Engineering Yale University, New Haven, Connecticut 06520, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Houston, Texas 77005, United States
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering Yale University, New Haven, Connecticut 06520, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Houston, Texas 77005, United States
| |
Collapse
|
36
|
Yuan B, Zhang S, Jiang C, Hu P, Cui J, Zhao S, Wang N, Niu QJ. Alicyclic polyamide nanofilms with an asymmetric structure for Cl
−
/
SO
4
2
−
separation. AIChE J 2021. [DOI: 10.1002/aic.17419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bingbing Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Shanshan Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Chi Jiang
- Institute for Advanced Study, Shenzhen University Shenzhen Guangdong China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering China University of Petroleum (East China) Qingdao Shandong China
| | - Ping Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Jiabao Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Siheng Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Ning Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Q. Jason Niu
- Institute for Advanced Study, Shenzhen University Shenzhen Guangdong China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering China University of Petroleum (East China) Qingdao Shandong China
| |
Collapse
|
37
|
Farahbakhsh J, Vatanpour V, Khoshnam M, Zargar M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Tomi Y, Manikandan V, Miyabe T, Yeleswarapu R, Echizen M, Nomi S. Comparing a Low-Fouling, High-Pressure RO Membrane with a Conventional Seawater RO Membrane for a Zero-Liquid-Discharge System. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.21we021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality. MEMBRANES 2021; 11:membranes11080616. [PMID: 34436379 PMCID: PMC8399043 DOI: 10.3390/membranes11080616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
Brackish water desalination, using the reverse osmosis (BWRO) process, has become common in global regions, where vast reserves of brackish groundwater are found (e.g., the United States, North Africa). A literature survey and detailed analyses of several BWRO facilities in Florida have revealed some interesting and valuable information on the costs and energy use. Depending on the capacity, water quality, and additional scope items, the capital cost (CAPEX) ranges from USD 500 to USD 2947/m3 of the capacity (USD 690-USD 4067/m3 corrected for inflation to 2020). The highest number was associated with the City of Cape Coral North Plant, Florida, which had an expanded project scope. The general range of the operating cost (OPEX) is USD 0.39 to USD 0.66/m3 (cannot be corrected for inflation), for a range of capacities from 10,000 to 70,000 m3/d. The feed-water quality, in the range of 2000 to 6000 mg/L of the total dissolved solids, does not significantly impact the OPEX. There is a significant scaling trend, with OPEX cost reducing as plant capacity increases, but there is considerable scatter based on the pre- and post-treatment complexity. Many BWRO facilities operate with long-term increases in the salinity of the feedwater (groundwater), caused by pumping-induced vertical and horizontal migration of the higher salinity water. Any cost and energy increase that is caused by the higher feed water salinity, can be significantly mitigated by using energy recovery, which is not commonly used in BWRO operations. OPEX in BWRO systems is likely to remain relatively constant, based on the limitation on the plant capacity, caused by the brackish water availability at a given site. Seawater reverse osmosis facilities, with a very large capacity, have a lower OPEX compared to the upper range of BWRO, because of capacity scaling, special electrical energy deals, and process design certainty.
Collapse
|
40
|
Chen Y, Yu X, Chen L, Liu S, Xu X, Zhao S, Huang S, Tian X. Dynamic Poly(dimethylsiloxane) Brush Coating Shows Even Better Antiscaling Capability than the Low-Surface-Energy Fluorocarbon Counterpart. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8839-8847. [PMID: 34138548 DOI: 10.1021/acs.est.1c01850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Scale formation is a significant problem in a wide range of industries, including water treatment, food processing, power plants, and oilfield production. While surface modification provides a promising methodology to address this challenge, it has generally been believed that surface coatings with the lowest surface energy, such as fluorocarbon coatings, are most suitable for antiscaling applications. In contrast to this general knowledge, here we show that a liquid-like coating featuring highly mobile linear poly(dimethylsiloxane) (LPDMS) brush chains can bring an even better antiscaling performance than conventional perfluoroalkylsilane coatings, despite the fact that the former has much higher surface energy than the latter. We demonstrate that the LPDMS brush coating can more effectively inhibit heterogeneous nucleation of scale on a substrate compared with common perfluoroalkylsilane or alkylsilane coatings, and the dynamic liquid-like characteristic of the LPDMS brush coating is speculated to be responsible for its excellent nucleation inhibiting ability by reducing the affinity and effective interface interaction between the substrate and the scale nucleus. Our findings reveal the great prospect of using liquid-like coating to replace environmentally hazardous fluorine-containing organic ones as a green and cost-effective solution to address the scale problem with enhanced antiscaling performance.
Collapse
Affiliation(s)
- Yuxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaodong Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Liwei Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Shilin Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shilin Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuelin Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
41
|
Ansari A, Peña-Bahamonde J, Wang M, Shaffer DL, Hu Y, Rodrigues DF. Polyacrylic acid-brushes tethered to graphene oxide membrane coating for scaling and biofouling mitigation on reverse osmosis membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119308] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Ravichandran SA, Hutfles J, Velasco J, Killgore J, Pellegrino J. Surface versus bulk CaCO3 crystals with ethylene vinyl alcohol co-polymers and polyamide thin-film composite membranes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Liu C, Wang W, Yang B, Xiao K, Zhao H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. WATER RESEARCH 2021; 195:116976. [PMID: 33706215 DOI: 10.1016/j.watres.2021.116976] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Membrane technology has been widely used in the wastewater treatment and seawater desalination. In recent years, the reverse osmosis (RO) membrane represented by polyamide (PA) has made great progress because of its excellent properties. However, the conventional PA RO membranes still have some scientific problems, such as membrane fouling, easy degradation after chlorination, and unclear mechanisms of salt retention and water flux, which seriously impede the widespread use of RO membrane technology. This paper reviews the progress in the research and development of the RO membrane, with key focus on the mechanisms and strategies of the contemporary separation, anti-fouling and chlorine resistance of the PA RO membrane. This review seeks to provide state-of-the-art insights into the mitigation strategies and basic mechanisms for some of the key challenges. Under the guidance of the fundamental understanding of each mechanism, operation and modification strategies are discussed, and reasonable analysis is carried out, which can address some key technical challenges. The last section of the review focuses on the technical issues, challenges, and future perspective of these mechanisms and strategies. Advances in synergistic mechanisms and strategies of the PA RO membranes have been rarely reviewed; thus, this review can serve as a guide for new entrants to the field of membrane water treatment and established researchers.
Collapse
Affiliation(s)
- Chao Liu
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjing Wang
- Institute of Ecology & Environment Governance, Hebei University, Baoding 071002, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|