1
|
Jiménez-Robles R, Izquierdo M, Martínez-Soria V, Martí L, Monleón A, Badia JD. Stability of Superhydrophobicity and Structure of PVDF Membranes Treated by Vacuum Oxygen Plasma and Organofluorosilanisation. MEMBRANES 2023; 13:314. [PMID: 36984700 PMCID: PMC10054235 DOI: 10.3390/membranes13030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Superhydrophobic poly(vinylidene fluoride) (PVDF) membranes were obtained by a surface treatment consisting of oxygen plasma activation followed by functionalisation with a mixture of silica precursor (SiP) (tetraethyl-orthosilicate [TEOS] or 3-(triethoxysilyl)-propylamine [APTES]) and a fluoroalkylsilane (1H,1H,2H,2H-perfluorooctyltriethoxysilane), and were benchmarked with coated membranes without plasma activation. The modifications acted mainly on the surface, and the bulk properties remained stable. From a statistical design of experiments on surface hydrophobicity, the type of SiP was the most relevant factor, achieving the highest water contact angles (WCA) with the use of APTES, with a maximum WCA higher than 155° for membranes activated at a plasma power discharge of 15 W during 15 min, without membrane degradation. Morphological changes were observed on the membrane surfaces treated under these plasma conditions, showing a pillar-like structure with higher surface porosity. In long-term stability tests under moderate water flux conditions, the WCA of coated membranes which were not activated by oxygen plasma decreased to approximately 120° after the first 24 h (similar to the pristine membrane), whilst the WCA of plasma-treated membranes was maintained around 130° after 160 h. Thus, plasma pre-treatment led to membranes with a superhydrophobic performance and kept a higher hydrophobicity after long-term operations.
Collapse
Affiliation(s)
- Ramón Jiménez-Robles
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain
| | - Marta Izquierdo
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain
| | - Vicente Martínez-Soria
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain
| | - Laura Martí
- Decarbonisation Department, Plastic Technology Institute (AIMPLAS), C/Gustave Eiffel 4, 46980 Paterna, Spain
| | - Alicia Monleón
- Decarbonisation Department, Plastic Technology Institute (AIMPLAS), C/Gustave Eiffel 4, 46980 Paterna, Spain
- Department of Organic Chemistry, School of Chemistry, University of Valencia, Dr Moliner 50, 46100 Burjassot, Spain
| | - José David Badia
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain
| |
Collapse
|
2
|
Jiménez-Robles R, Martínez-Soria V, Izquierdo M. Fouling characterisation in PVDF membrane contactors for dissolved methane recovery from anaerobic effluents: effect of surface organofluorosilanisation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29164-29179. [PMID: 36409410 PMCID: PMC9995407 DOI: 10.1007/s11356-022-24019-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/01/2022] [Indexed: 04/16/2023]
Abstract
Characterisation of the fouling attached to PVDF membranes treating an anaerobic effluent for dissolved CH4 recovery was carried out. A commercial flat-sheet PVDF membrane and a PVDF functionalised by grafting of organofluorosilanes (mPVDF) that increased its hydrophobicity were subjected to a continuous flux of an anaerobic reactor effluent in long-term operation tests (> 800 h). The fouling cakes were studied by the membrane autopsy after these tests, combining a staining technique, FTIR, and FESEM-EDX, and the fouling extraction with water and NaOH solutions. Both organic and inorganic fouling were observed, and the main foulants were proteins, polysaccharides, and different calcium and phosphate salts. Also, a significant amount of live cells was detected on the fouling cake (especially on the non-modified PVDF). Although the fouling cake composition was quite heterogeneous, a stratification was observed, with the inorganic fouling mainly in the bulk centre of the cake and the organic fouling mainly located in the lower and upper surfaces of the cake. The mPVDF suffered a more severe fouling, likely owing to a stronger hydrophobic-hydrophobic interaction with the foulants. Irreversible fouling remained on both membranes after the extraction, although a higher irreversible fouling was detected in the mPVDF; however, a complete polysaccharide removal was observed. Regarding the operation performance, PVDF showed a lower stability and suffered a severe degradation, resulting in a lower thickness and perforations. Finally, the decrease in the methane recovery performance of both membranes was associated with the fouling depositions.
Collapse
Affiliation(s)
- Ramón Jiménez-Robles
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda, Universitat S/N, 46100, Burjassot, Spain
| | - Vicente Martínez-Soria
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda, Universitat S/N, 46100, Burjassot, Spain
| | - Marta Izquierdo
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda, Universitat S/N, 46100, Burjassot, Spain.
| |
Collapse
|
3
|
Saeid Hosseini S, Azadi Tabar M, F. J. Vankelecom I, F. M. Denayer J. Progress in High Performance Membrane Materials and Processes for Biogas Production, Upgrading and Conversion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Visnyei M, Bakonyi P, Bélafi-Bakó K, Nemestóthy N. Integration of gas-liquid membrane contactors into anaerobic digestion as a promising route to reduce uncontrolled greenhouse gas (CH 4/CO 2) emissions. BIORESOURCE TECHNOLOGY 2022; 364:128072. [PMID: 36229009 DOI: 10.1016/j.biortech.2022.128072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
In this research, the recovery of dissolved biogas (CO2/CH4) from synthetic anaerobic effluents was studied using non-porous, polydimethylsiloxane (PDMS), hollow-fibre gas-liquid membrane contactors towards the design of a reduced carbon-footprint integrated bioprocess. As a key parameter, the gas-to-liquid (G/L) ratio (employing argon as sweep gas) was systematically varied in the range of 0.5-2.0. The results showed on a 1 m2 PDMS module that increasing the liquid (effluent) flow rate favours the CH4 transport, while a higher sweep gas flow rate is preferable for the CO2 transport over CH4. Depending on the actual biogas composition and the CO2 content of the effluent, the methane recovery could be improved up to 63 % under steady-state conditions. In general, similar tendencies were observed when another PDMS membrane module with a smaller surface area (2 500 cm2) was applied hence, in this sense, the separation behaviour seems to be independent of the membrane size.
Collapse
Affiliation(s)
- Merve Visnyei
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Péter Bakonyi
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Katalin Bélafi-Bakó
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary.
| | - Nándor Nemestóthy
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| |
Collapse
|
5
|
Jiménez-Robles R, Moreno-Torralbo BM, Badia JD, Martínez-Soria V, Izquierdo M. Flat PVDF Membrane with Enhanced Hydrophobicity through Alkali Activation and Organofluorosilanisation for Dissolved Methane Recovery. MEMBRANES 2022; 12:membranes12040426. [PMID: 35448396 PMCID: PMC9027404 DOI: 10.3390/membranes12040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
A three-step surface modification consisting of activation with NaOH, functionalisation with a silica precursor and organofluorosilane mixture (FSiT), and curing was applied to a poly(vinylidene fluoride) (PVDF) membrane for the recovery of dissolved methane (D-CH4) from aqueous streams. Based on the results of a statistical experimental design, the main variables affecting the water contact angle (WCA) were the NaOH concentration and the FSiT ratio and concentration used. The maximum WCA of the modified PVDF (mPVDFmax) was >140° at a NaOH concentration of 5%, an FSiT ratio of 0.55 and an FSiT concentration of 7.2%. The presence of clusters and a lower surface porosity of mPVDF was detected by FESEM analysis. In long-term stability tests with deionised water at 21 L h−1, the WCA of the mPVDF decreased rapidly to around 105°, similar to that of pristine nmPVDF. In contrast, the WCA of the mPVDF was always higher than that of nmPVDF in long-term operation with an anaerobic effluent at 3.5 L h−1 and showed greater mechanical stability, since water breakthrough was detected only with the nmPVDF membrane. D-CH4 degassing tests showed that the increase in hydrophobicity induced by the modification procedure increased the D-CH4 removal efficiency but seemed to promote fouling.
Collapse
Affiliation(s)
- Ramón Jiménez-Robles
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (R.J.-R.); (V.M.-S.)
| | - Beatriz María Moreno-Torralbo
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (B.M.M.-T.); (J.D.B.)
| | - Jose David Badia
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (B.M.M.-T.); (J.D.B.)
| | - Vicente Martínez-Soria
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (R.J.-R.); (V.M.-S.)
| | - Marta Izquierdo
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (R.J.-R.); (V.M.-S.)
- Correspondence: ; Tel.: +34-963-543-737; Fax: +34-963-544-898
| |
Collapse
|
6
|
Jiménez-Robles R, Gabaldón C, Badia J, Izquierdo M, Martínez-Soria V. Recovery of dissolved methane through a flat sheet module with PDMS, PP, and PVDF membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
On the Control Strategy to Improve the Salt Rejection of a Thin-Film Composite Reverse Osmosis Membrane. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the specific energy consumption (SEC) required for reverse osmosis (RO) desalination has been steeply reduced over the past few decades, there is an increasing demand for high-selectivity membranes. However, it is still hard to find research papers empirically dealing with increasing the salt rejection of RO membranes and addressing the SEC change possibly occurring while increasing salt rejection. Herein, we examined the feasibility of the process and material approaches to increase the salt rejection of RO membranes from the perspective of the SEC and weighed up a better approach to increase salt rejection between the two approaches. A process approach was confirmed to have some inherent limitations in terms of the trade-off between water permeability and salt rejection. Furthermore, a process approach is inappropriate to alter the intrinsic salt permeability of RO membranes, such that it should be far from a fundamental improvement in the selectivity of RO membranes. Thus, we could conclude that a material approach is necessary to make a fundamental improvement in the selectivity of RO membranes. This paper also provides discussion on the specific demands for RO membranes featuring superior mechanical properties and excellent water/salt permselectivity to minimize membrane compaction while maximizing the selectivity.
Collapse
|
8
|
Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing demand for water and energy has emphasized the significance of energy-efficient anaerobic wastewater treatment; however, anaerobic effluents still containing a large portion of the total CH4 production are discharged to the environment without being utilized as a valuable energy source. Recently, gas–liquid membrane contactors have been considered as a promising technology to recover such dissolved methane from the effluent due to their attractive characteristics such as high specific mass transfer area, no flooding at high flow rates, and low energy requirement. Nevertheless, the development and further application of membrane contactors were still not fulfilled due to their inherent issues such as membrane wetting and fouling, which lower the CH4 recovery efficiency and thus net energy production. In this perspective, the topics in membrane contactors for dissolved CH4 recovery are discussed in the following order: (1) operational principle, (2) potential as waste-to-energy conversion system, and (3) technical challenges and recent efforts to address them. Then, future efforts that should be devoted to advancing gas–liquid membrane contactors are suggested as concluding remarks.
Collapse
|
9
|
High-Loaded Bioflocculation Membrane Reactor of Novel Structure for Organic Matter Recovery from Sewage: Effect of Dissolved Oxygen on Bioflocculation and Membrane Fouling. SUSTAINABILITY 2020. [DOI: 10.3390/su12187385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a new structure of high-load membrane bioreactor (HLB-MR) was used to treat urban sewage, and the effects of dissolved oxygen (DO) on biological flocculation and membrane pollution were researched. Parallel comparative experiments were used to investigate the concentration and recovery efficiency of organic matter, the bioflocculation effect, the content of extracellular polymer substance (EPS), the concentration of metal cations, membrane fouling status and microbial community structure in the reactors under the conditions of 1–2 and 6–8 mg/L. The flocculation efficiency of HLB-MR was 83% and 89% when DO was 1–2 and 6–8 mg/L, respectively. Under DO of 6–8 mg/L, the contents of bound and free EPS in the HLB-MR were 15.64 mg/gVSS and 8.71 mg/L, respectively. These values were significantly higher than those obtained when DO was 1–2 mg/L (11.83 mg/gVSS and 6.56 mg/L, respectively). Moreover, the concentrations of magnesium and aluminum in the concentrate of the HLB-MR were significantly higher when DO was 6–8 mg/L. Under higher DO concentration, there would be more EPS combined with metal cations, and thus fixed in the sludge substrate, the process of which promoted the bioflocculation. Changes in the transmembrane pressure (TMP) showed that the HLB-MR at a higher DO concentration suffered more serious membrane fouling. The species difference between the supernatant and precipitate was more significant under a higher DO concentration. The plankton species in the supernatant, e.g., norank_p__Saccharibacteria, norank_f__Neisseriaceae, and 12up, were likely to exacerbate membrane fouling. However, the species in the precipitate like Trichococcus, Ornithinibacter, and norank_f__Saprospiraceae may have a positive effect on bioflocculation.
Collapse
|