1
|
Yan T, Sharif A, Zhang Z, Wang H, Yang J, He C, Lu J, Zhou L, He G. Asymmetric Pore Windows in Pillar-Layered Metal-Organic Framework Membranes for H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65456-65468. [PMID: 39546618 DOI: 10.1021/acsami.4c12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
In this study, a novel ultramicroporous pillar-layered Ni-LAP-NH2 [Ni2(l-asp)2(Pz-NH2)] (l-asp = l-aspartic acid, Pz-NH2 = aminopyrazine) membranes on porous α-Al2O3 tubes with high performance and good thermal stability was first fabricated using isostructural Ni-LAP[Ni2(l-asp)2(Pz)] (Pz = pyrazine) crystals as seeds. Utilizing the principle of reticular chemistry, here, we introduced the active amino side group into the Ni-LAP frameworks by replacing the pillar-layered ligand Pz with Pz -NH2 while maintaining the original Ni-LAP small pore size, and the amino side group induced a "steric hindrance" effect and the physical adsorption affinity, which synergistically delayed CO2 penetration. It was found that the preferential (111) orientation Ni-LAP-NH2 membrane (Z10) exhibited a high H2/CO2 separation performance with a separation factor of 41.7 and H2 permeance of 9.08 × 10-8 mol·m-2·s-1·Pa-1 under optimal conditions. These MOF materials demonstrated potential for industrial H2 purification due to their tunable pore structure and remarkable stability. Moreover, this strategy offers an effective approach to tailoring pillar-layered MOF membranes with targeted molecular sieving ability.
Collapse
Affiliation(s)
- Tao Yan
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Xiangtan Electrochemical Scientific Co., Ltd., Xiangtan 411100, China
| | - Asad Sharif
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Hongbo Wang
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianhua Yang
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liang Zhou
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
2
|
Qiang Z, Yi Z, Wang JW, Khandge RS, Ma X. Fabrication of Polycrystalline Zeolitic Imidazolate Framework Membranes by a Vapor-Phase Seeding Method. MEMBRANES 2023; 13:782. [PMID: 37755204 PMCID: PMC10538002 DOI: 10.3390/membranes13090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
The reliable fabrication of polycrystalline zeolitic imidazolate framework (ZIF) membranes continues to pose challenges for their industrial applications. Here, we present a vapor-phase seeding approach that integrates atomic layer deposition (ALD) with ligand vapor treatment to synthesize ZIF membranes with high propylene/propane separation performance. This method began with depositing a ZnO coating onto the support surface via ALD. The support underwent treatment with 2-methylimidazole vapor to transform ZnO to ZIF-8, forming the seed layer. Subsequent secondary growth was employed at near-room temperature, allowing the seeds to grow into a continuous membrane. ZIF-8 membranes made on macroporous ceramic support by this method consistently demonstrated propylene permeances above 1 × 10-8 mol Pa-1 m-2 s-1 and a propylene/propane separation factor exceeding 50. Moreover, we demonstrated the effectiveness of the vapor-phase seeding method in producing the ZIF-67 membrane.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoli Ma
- Department of Materials Science and Engineering, University of Wisconsin—Milwaukee, Milwaukee, WI 53201, USA; (Z.Q.); (Z.Y.); (J.-W.W.); (R.S.K.)
| |
Collapse
|
3
|
Massahud E, Ahmed H, Babarao R, Ehrnst Y, Alijani H, Darmanin C, Murdoch BJ, Rezk AR, Yeo LY. Acoustomicrofluidic Defect Engineering and Ligand Exchange in ZIF-8 Metal-Organic Frameworks. SMALL METHODS 2023; 7:e2201170. [PMID: 36855216 DOI: 10.1002/smtd.202201170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Indexed: 06/09/2023]
Abstract
A way through which the properties of metal-organic frameworks (MOFs) can be tuned is by engineering defects into the crystal structure. Given its intrinsic stability and rigidity, however, it is difficult to introduce defects into zeolitic imidazolate frameworks (ZIFs)-and ZIF-8, in particular-without compromising crystal integrity. In this work, it is shown that the acoustic radiation pressure as well as the hydrodynamic stresses arising from the oscillatory flow generated by coupling high frequency (MHz-order) hybrid surface and bulk acoustic waves into a suspension of ZIF-8 crystals in a liquid pressure transmitting medium is capable of driving permanent structural changes in their crystal lattice structure. Over time, the enhancement in the diffusive transport of guest molecules into the material's pores as a consequence is shown to lead to expansion of the pore framework, and subsequently, the creation of dangling-linker and missing-linker defects, therefore offering the possibility of tuning the type and extent of defects engineered into the MOF through the acoustic exposure time. Additionally, the practical utility of the technology is demonstrated for one-pot, simultaneous solvent-assisted ligand exchange under ambient conditions, for sub-micron-dimension ZIF-8 crystals and relatively large ligands-more specifically 2-aminobenzimidazole-without compromising the framework porosity or overall crystal structure.
Collapse
Affiliation(s)
- Emily Massahud
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Heba Ahmed
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ravichandar Babarao
- Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, VIC, 3168, Australia
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Yemima Ehrnst
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hossein Alijani
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Connie Darmanin
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
4
|
Semwal A, Sajwan D, Rawat J, Gambhir L, Sharma H, Dwivedi C. Synergistic C-TiO 2/ZIF-8 type II heterojunction photocatalyst for enhanced photocatalytic degradation of methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45827-45839. [PMID: 36708477 DOI: 10.1007/s11356-023-25336-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Zinc imidazolate framework (ZIF-8) and titanium dioxide (TiO2) have been extensively studied as photocatalysts and have shown remarkable potential. In this study, we report the synthesis of a type II heterojunction photocatalyst based on carbon-doped TiO2 (C-TiO2) and ZIF-8 as a potentially improved material for solar light-harvested methylene blue (MB) degradation. Pure ZIF-8 has a wide band gap of 4.9 eV, due to which the application of this material to visible light-assisted photocatalytic performance is a challenging task. Therefore, C-TiO2 has been chosen as a composite material with ZIF-8 owing to its narrow band gap compared to TiO2. This enables the free radical-initiated photocatalytic reaction to shift into the visible region instead of the ultraviolet region. To construct the C-TiO2/ZIF-8 heterostructure, the zinc-based ZIF matrix has been built upon the exterior of C-TiO2 nanoparticles. UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS) corroborated the decrease in the band gap of ZIF-8 after the fabrication of C-TiO2/ZIF-8, while X-ray diffraction (XRD) analysis demonstrated a decrease in average d-spacing and average crystallite size of the synthesized photocatalyst. Raman spectra and X-ray photoelectron spectroscopy (XPS) analysis of the synthesized samples were also performed to further understand their chemical structure and elemental content. Ultraviolet photoelectron spectroscopy (UPS) and high-resolution transmission electron microscopy (HRTEM) analyses were performed to understand the valence band (VB) states and the morphology of C-TiO2/ZIF-8. The comparison between pure ZIF-8 and C-TiO2/ZIF-8 in the photocatalytic degradation of MB under visible light has also been drawn. A possible charge-transfer mechanism for the same has also been proposed. It is concluded that the synergistic effect of C-TiO2 and ZIF-8 in C-TiO2/ZIF-8 produces an effective material for photocatalytic dye degradation.
Collapse
Affiliation(s)
- Anubhi Semwal
- Department of Chemistry, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Devanshu Sajwan
- Department of Chemistry, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Jyoti Rawat
- Department of Chemistry, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Lokesh Gambhir
- Department of Biotechnology, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun, 248001, India
| | - Himani Sharma
- Department of Physics, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Charu Dwivedi
- Department of Chemistry, Doon University, Dehradun, 248001, Uttarakhand, India.
| |
Collapse
|
5
|
Song H, Peng Y, Wang C, Shu L, Zhu C, Wang Y, He H, Yang W. Structure Regulation of MOF Nanosheet Membrane for Accurate H 2 /CO 2 Separation. Angew Chem Int Ed Engl 2023; 62:e202218472. [PMID: 36854948 DOI: 10.1002/anie.202218472] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
High-purity H2 production accompanied with a precise decarbonization opens an avenue to approach a carbon-neutral society. Metal-organic framework nanosheet membranes provide great opportunities for an accurate and fast H2 /CO2 separation, CO2 leakage through the membrane interlayer galleries decided the ultimate separation accuracy. Here we introduce low dose amino side groups into the Zn2 (benzimidazolate)4 conformation. Physisorbed CO2 served as interlayer linkers, gently regulated and stabilized the interlayer spacing. These evoked a synergistic effect of CO2 adsorption-assisted molecular sieving and steric hinderance, whilst exquisitely preserving apertures for high-speed H2 transport. The optimized amino membranes set a new record for ultrathin nanosheet membranes in H2 /CO2 separation (mixture separation factor: 1158, H2 permeance: 1417 gas permeation unit). This strategy provides an effective way to customize ultrathin nanosheet membranes with desirable molecular sieving ability.
Collapse
Affiliation(s)
- Hongling Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Yuan Peng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Chenlu Wang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lun Shu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Chenyu Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Yanlei Wang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan He
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
6
|
Wang X, Ma Q, Cheng J, He D, Zhang L, Lu P, Jin H, Choi J, Li Y. Crystallization-controlled defect minimization of a ZIF-67 membrane for the robust separation of propylene and propane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Qu K, Huang K, Xu J, Dai L, Wang Y, Cao H, Xia Y, Wu Y, Xu W, Yao Z, Guo X, Lian C, Xu Z. High‐Efficiency CO
2
/N
2
Separation Enabled by Rotation of Electrostatically Anchored Flexible Ligands in Metal–Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202213333. [DOI: 10.1002/anie.202213333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Qu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Kang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Jipeng Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Hongyan Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yongsheng Xia
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Weiyi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Zhizhen Yao
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| |
Collapse
|
8
|
Hansen solubility parameters-guided mixed matrix membranes with linker-exchanged metal-organic framework fillers showing enhanced gas separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Rigid-interface-locking of ZIF-8 membranes to enable for superior high-pressure propylene/propane separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Kunjattu H S, Kharul UK. PPO-ZIF MMMs possessing metal-polymer interactions for propane/propylene separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Lian H, Bao B, Chen J, Yang W, Yang Y, Hou R, Ju S, Pan Y. Controllable synthesis of ZIF-8 interlocked membranes for propylene/propane separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Boosting the CO2/N2 selectivity of MMMs by vesicle shaped ZIF-8 with high amino content. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Nam KJ, Yu HJ, Yu S, Seong J, Kim SJ, Kim KC, Lee JS. In Situ Synthesis of Multivariate Zeolitic Imidazolate Frameworks for C 2 H 4 /C 2 H 6 Kinetic Separation. SMALL METHODS 2022; 6:e2200772. [PMID: 36047652 DOI: 10.1002/smtd.202200772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Herein, a new approach for the in situ synthesis of zeolitic imidazolate framework (ZIF) nanoparticles with triple ligands, referred to as Sogang ZIF-8 (SZIF-8), is reported for enhanced C2 H4 /C2 H6 kinetic separation. SZIF-8 consists of tetrahedral zinc metals coordinated with tri-butyl amine (TBA), 2,4-dimethylimidazole (DIm), and 2-methylimidazole (MIm). SZIF-8(x) with different DIm contents in x (up to 23.2 mol%) are synthesized in situ because TBA preferably deprotonates DIm ligands due to the much lower pKa of DIm over MIm, allowing for the Zn-DIm coordination. The Zn-DIm coordination reduces the window size of ZIF-8 with suppressed linker flipping motion due to bulky DIm ligands and simultaneously enhances the interfacial interaction between 6FDA-DAM polyimide (6FDA) and SZIF-8 via electron donor-acceptor interactions. Consequently, 6FDA/SZIF-8(13) mixed matrix membrane exhibits an excellent C2 H4 permeability of 60.3 Barrer and C2 H4 /C2 H6 selectivity of 4.5. The temperature-dependent transport characterization reveals that such excellent C2 H4 /C2 H6 kinetic separation is attained by the enhancement in size discrimination-based energetic selectivity. Our hybrid multi-ligand approach can offer a useful tool for the fine-tuning of molecular structures and textural properties of other metal organic frameworks.
Collapse
Affiliation(s)
- Ki Jin Nam
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Hyun Jung Yu
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seungho Yu
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeongho Seong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
14
|
Liu Y, Wu H, Li R, Wang J, Kong Y, Guo Z, Jiang H, Ren Y, Pu Y, Liang X, Pan F, Cao Y, Song S, He G, Jiang Z. MOF-COF "Alloy" Membranes for Efficient Propylene/Propane Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201423. [PMID: 35417619 DOI: 10.1002/adma.202201423] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Molecular-sieving membranes from metal-organic frameworks (MOFs) are promising candidates for separating olefin/paraffin mixtures, a critical demand in sustainable chemical processes and a grand challenge in molecular separation. Currently, the inherent lattice flexibility of MOFs severely compromises their precise sieving ability. Here, a proof-of-concept of "alloy" membranes (AMs), which are fabricated by incorporating quaternary ammonium (QA)-functionalized covalent organic frameworks (COFs) into a zeolitic imidazolate framework-8 (ZIF-8) matrix is demonstrated. The Coulomb force between the COFs and the ZIF-8 restricts the linker rotation of the ZIF-8, generating a distinct alloying effect, by which the lattice rigidity of ZIF-8 can be conveniently tuned through varying the content of the COFs, similar to the flexible-to-rigid transition in aluminum alloy manufacturing. Such an alloying effect confers the AM's superior propylene/propane separation performance, with a propylene/propane separation factor surpassing 200 and a propylene permeance of 168 GPU. Hopefully, the AMs concept and the concomitant alloying effect can update the connotation of mixed matrix membranes and stimulate the re-envisioning about the design paradigm and development of advanced membranes for energy-efficient separations.
Collapse
Affiliation(s)
- Yutao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Runlai Li
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jianyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yan Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zheyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yunchuan Pu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuqing Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
15
|
Lee DT, Corkery P, Park S, Jeong HK, Tsapatsis M. Zeolitic Imidazolate Framework Membranes: Novel Synthesis Methods and Progress Toward Industrial Use. Annu Rev Chem Biomol Eng 2022; 13:529-555. [PMID: 35417198 DOI: 10.1146/annurev-chembioeng-092320-120148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dennis T Lee
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA;
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA;
| | - Sunghwan Park
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA;
| | - Hae-Kwon Jeong
- Artie McFerrin Department of Chemical Engineering and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA;
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; .,Applied Physics Laboratory, Johns Hopkins University, Laurel, Texas, USA
| |
Collapse
|
16
|
Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Xiong S, Pan C, Dai G, Liu C, Tan Z, Chen C, Yang S, Ruan X, Tang J, Yu G. Interfacial co-weaving of AO-PIM-1 and ZIF-8 in composite membranes for enhanced H2 purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Xiao Y, Lei X, Xue S, Lian R, Xiong G, Xin X, Wang D, Zhang Q. Mechanically Strong, Thermally Stable Gas Barrier Polyimide Membranes Derived from Carbon Nanotube-Based Nanofluids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56530-56543. [PMID: 34758621 DOI: 10.1021/acsami.1c15018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gas barrier membranes with impressive moisture permeability are highly demanded in air or nature gas dehumidification. We report a novel approach using polyetheramine oligomers covalently grafted on the carbon nanotubes (CNTs) to engineer liquid-like CNT nanofluids (CNT NFs), which are incorporated into a polyimide matrix to enhance the gas barrier and moisture permeation properties. Benefiting from the featured liquid-like characteristic of CNT NFs, a strong interfacial compatibility between CNTs and the polyimide matrix is achieved, and thus, the resulting membranes exhibit high heat resistance and desirable mechanical strength as well as remarkable fracture toughness, beneficially to withstanding creep, impact, and stress fatigue in separation applications. Positron annihilation lifetime spectroscopy measurements indicate a significant decrease in fractional free volume within the resulting membranes, leading to greatly enhanced gas barrier properties while almost showing full retention of moisture permeability compared to that of the pristine membrane. For membranes with 10 wt % CNT NFs, the gas transmission rates, respectively, decrease 99.9% for CH4, 94.4% for CO2, 99.2% for N2, and 97.9% for O2 compared with that of the pristine membrane. Most importantly, with the increasing amount of CNT NFs, the hybrid membranes demonstrate a simultaneous increase of barrier performance and permselectivity for H2O/CH4, H2O/N2, H2O/CO2, and H2O/O2. All these results make these membranes potential candidates for high-pressure natural gas or hyperthermal air dehydration.
Collapse
Affiliation(s)
- Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Ruhe Lian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiangze Xin
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Dechao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
19
|
Improved C3H6/C3H8 separation performance on ZIF-8 membranes through enhancing PDMS contact-dependent confinement effect. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Abdul Hamid MR, Shean Yaw TC, Mohd Tohir MZ, Wan Abdul Karim Ghani WA, Sutrisna PD, Jeong HK. Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Fabrication of Hybrid Materials Based on Waste Polyethylene/Porous Activated Metakaolinite Nanocomposite as an Efficient Membrane for Heavy Metal Desalination Processes. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/6695398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hybrid nanostructure materials derived from activated metakaolinite are of growing importance due to their intriguing structural/functional properties and promising biomedical/environmental applications, especially designing desalination membranes. Herein, we report procedures to design and fabricate membranes based on waste polyethylene/porous activated-metakaolinite thin film nanocomposites (WPE/PAMK-TFN). It has been devoted to improving water desalination processes, where efficient removal of trace level (~250 ppm) of toxic heavy metals such as Cd(II), Pb(II), and Cu(II) ions from synthetic wastewater solutions was highly accomplished. Physicochemical techniques such as X-ray diffraction (XRD), surface analysis (BET), and Fourier transform infrared spectroscopy (FTIR) have been extensively employed to elucidate the structure/composition of the prepared nanomaterials. The effect of concentration (0–0.5 wt%) of porous activated-metakaolinite (PAMK) on water permeation was investigated. The results obtained revealed that 0.5 wt% of PAMK clay particles produced the highest dispersion, as evident by SEM images of the nanocomposite membranes. Significantly, the constructed membrane showed marked improvements in porosity, hydrophilicity, and hydraulic resistance. Moreover, elemental mapping studies have confirmed the intercalation of activated bentonite clay within the polymer matrix. The obtained results demonstrated that increased flux and rejection capability of membranes occurred at high clay dosage. In contrast, the low rejection capability was observed at either lower pH and higher initial feed concentrations. Ultimately, for 250 ppm of Cd(II), Pb(II), and Cu(II) ions, the constructed membranes showed maximum removal capability of 69.3%, 76.2%, and 82.5% of toxic cations, respectively.
Collapse
|