1
|
Abounahia N, Shahab AA, Khan MM, Qiblawey H, Zaidi SJ. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. MEMBRANES 2023; 13:872. [PMID: 37999358 PMCID: PMC10672921 DOI: 10.3390/membranes13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale. Phase inversion and electrospinning methods were the most utilized techniques to fabricate PAN-based FO membranes. The PAN substrate layer could function as a good support layer to create TFC and fiber membranes with excellent performance under FO process conditions by selecting the proper modification techniques. The various modification techniques used to enhance PAN-based FO performance include interfacial polymerization, layer-by-layer assembly, simple coating, and incorporating nanofillers. Thus, the fabrication and modification techniques of PAN-based porous FO membranes have been highlighted in this work. Also, the performance of these FO membranes was investigated. Finally, perspectives and potential directions for further study on PAN-based FO membranes are presented in light of the developments in this area. This review is expected to aid the scientific community in creating novel effective porous FO polymeric membranes based on PAN polymer for various water and wastewater treatment applications.
Collapse
Affiliation(s)
- Nada Abounahia
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Arqam Azad Shahab
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Mohammad Khan
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Zhao S, Miao P, Zhang J, Gan J, Du Y, Chen C, Sun X, Feng Z, Ma X, Ma M, Xi Y, Ding W. Polydopamine Coating Doped with Graphene Oxide Enhances Enantioseparation of Capillary Column. J Chromatogr Sci 2023; 61:699-704. [PMID: 35397163 DOI: 10.1093/chromsci/bmac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 08/22/2023]
Abstract
How to improve the enantiomer separation efficiency of drugs is a hot topic. In this paper, polydopamine (PDA) coating doped with graphene oxide (GO) by physical adsorption was used to modify the capillary column to enhance the enantioseparation efficiency of the drugs. In the capillary electrochromatography (CEC) system, the novel capillary column with carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector has completed the enantioseparation of four basic drugs (propranolol, metoprolol, amlodipine and chlorpheniramine). The optimum separation conditions were obtained by optimizing the pH of the buffer, the concentration of organic modifier, the concentration of the chiral selector and the voltage, and the resolution and peak shape were significantly improved compared with uncoated bare-fused column. The stability and reproducibility of the new capillary column were satisfactory and the relative standard deviation of intra-day and inter-day was <3.2%, and of column-to-column was <4.8%. The rich functional groups of GO are key factors to improve the enantioseparation efficiency, which also indicates that nanomaterials with easy modification of functional groups and large specific surface area are excellent resources for capillary modification applications.
Collapse
Affiliation(s)
- Shiyuan Zhao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Panden Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Jie Gan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Xiaodong Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Ying Xi
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Wen Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
3
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
4
|
Zhou S, Zhou Y, He J, Lai Y, Li Y, Yan W, Zhou Y, Gao C. Generation of Nano-Bubbles by NaHCO 3 for Improving the FO Membrane Performance. MEMBRANES 2023; 13:404. [PMID: 37103831 PMCID: PMC10143354 DOI: 10.3390/membranes13040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Thin-film composite (TFC) polyamide membranes have a wide range of applications in forward osmosis, but tuning the water flux remains a significant challenge due to concentration polarization. The generation of nano-sized voids within the polyamide rejection layer can change the roughness of the membrane. In this experiment, the micro-nano structure of the PA rejection layer was adjusted by adding sodium bicarbonate to the aqueous phase to generate nano-bubbles, and the changes of its roughness with the addition of sodium bicarbonate were systematically demonstrated. With the enhanced nano-bubbles, more and more blade-like and band-like features appeared on the PA layer, which could effectively reduce the reverse solute flux of the PA layer and improve the salt rejection of the FO membrane. The increase in roughness raised the area of the membrane surface, which led to a larger area for concentration polarization and reduced the water flux. This experiment demonstrated the variation of roughness and water flux, providing an effective idea for the preparation of high-performance FO membranes.
Collapse
|
5
|
Carmona B, Abejón R. Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis. MEMBRANES 2023; 13:385. [PMID: 37103812 PMCID: PMC10145262 DOI: 10.3390/membranes13040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
A bibliometric analysis, using the Scopus database as a source, was carried out in order to study the scientific documents published up to 2021 regarding the use of electrodialysis, membrane distillation, and forward osmosis for the removal of heavy metals from wastewater. A total of 362 documents that fulfilled the search criteria were found, and the results from the corresponding analysis revealed that the number of documents greatly increased after the year 2010, although the first document was published in 1956. The exponential evolution of the scientific production related to these innovative membrane technologies confirmed an increasing interest from the scientific community. The most prolific country was Denmark, which contributed 19.3% of the published documents, followed by the two main current scientific superpowers: China and the USA (with 17.4% and 7.5% contributions, respectively). Environmental Science was the most common subject (55.0% of contributions), followed by Chemical Engineering (37.3% of contributions) and Chemistry (36.5% of contribution). The prevalence of electrodialysis over the other two technologies was clear in terms of relative frequency of the keywords. An analysis of the main hot topics identified the main advantages and drawbacks of each technology, and revealed that examples of their successful implementation beyond the lab scale are still scarce. Therefore, complete techno-economic evaluation of the treatment of wastewater polluted with heavy metals via these innovative membrane technologies must be encouraged.
Collapse
Affiliation(s)
- Benjamín Carmona
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
6
|
Liu J, Fan S, Li C, Qing H, Xiao Z. Sandwich Structure Membrane with Enhanced Anti-Swelling Property and Mechanical Strength for Bioethanol Separation by Pervaporation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Jingyun Liu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Chuang Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Haijie Qing
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
7
|
Wu L, Li Q, Ma C, Li M, Yu Y. A novel conductive carbon-based forward osmosis membrane for dye wastewater treatment. CHEMOSPHERE 2022; 308:136367. [PMID: 36088972 DOI: 10.1016/j.chemosphere.2022.136367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) membrane fouling is one of the main reasons that hinder the further application of FO technology in the treatment of dye wastewater. To alleviate membrane fouling, a conductive coal carbon-based substrate and polydopamine nanoparticles (PDA NPs) interlayer composite FO membrane (CPFO) was prepared by interfacial polymerization (IP). CPFO-10 membrane prepared by depositing 10 mL of PDA NPs solution exhibited an optimum performance with water flux of 7.56 L/(m2h) for FO mode and 10.75 L/(m2h) for pressure retarded osmosis (PRO) mode, respectively. For rhodamine B and chrome black T dye wastewater treatment, the water flux losses were reduced by 21.6%, and 14.5% under the voltages of +1.5 V, and -1.5 V, respectively, compared with no voltage applied after the device was operated for 8 h. The applied voltage had little effect on the fouling mitigation performance of the CPFO membrane for neutral charged cresol red. After the device was operated for 4 cycles, the rejection rates of dyes wastewater treated by the CPFO membranes with applied voltage were close to 100%. The flux decline rate and flux recovery rate of CPFO membrane for rhodamine B and chrome black T wastewater treatment under application of +1.5 V and -1.5 V voltage after 4 cycles were 11.6%, 99.2%, and 16.7%, 98.9%, respectively. Therefore, the voltage-applied CPFO membrane still maintained good rejection and antifouling performance in long-term operation. This study provides a new insight into the preparation of conductive FO membranes for dye wastewater treatment and membrane fouling control.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Qianqian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China.
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Yujuan Yu
- Center of Environmental Emergency and Accident Investigation of Changchun, Changchun, 130000, China
| |
Collapse
|
8
|
Li M, Yang Y, Zhu L, Wang G, Zeng Z, Xue L. Anti-fouling and highly permeable thin-film composite forward osmosis membranes based on the reactive polyvinylidene fluoride porous substrates. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Wang J, Wang L, He M, Wang X, Lv Y, Huang D, Wang J, Miao R, Nie L, Hao J, Wang J. Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Adv 2022; 12:34245-34267. [PMID: 36545600 PMCID: PMC9706687 DOI: 10.1039/d2ra06304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Polyamide (PA) reverse osmosis and nanofiltration membranes have been applied widely for desalination and wastewater reuse in the last 5-10 years. A novel thin-film nanocomposite (TFN) membrane featuring a nanomaterial interlayer (TFNi) has emerged in recent years and attracted the attention of researchers. The novel TFNi membranes are prepared from different nanomaterials and with different loading methods. The choices of intercalated nanomaterials, substrate layers and loading methods are based on the object to be treated. The introduction of nanostructured interlayers improves the formation of the PA separation layer and provides ultrafast water molecule transport channels. In this manner, the TFNi membrane mitigates the trade-off between permeability and selectivity reported for polyamide composite membranes. In addition, TFNi membranes enhance the removal of metal ions and organics and the recovery of organic solvents during nanofiltration and reverse osmosis, which is critical for environmental ecology and industrial applications. This review provides statistics and analyzes the developments in TFNi membranes over the last 5-10 years. The latest research results are reviewed, including the selection of the substrate and interlayer materials, preparation methods, specific application areas and more advanced characterization methods. Mechanistic aspects are analyzed to encourage future research, and potential mechanisms for industrialization are discussed.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Xudong Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Yongtao Lv
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Danxi Huang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Rui Miao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lujie Nie
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jiajin Hao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jianmin Wang
- Zhongfan International Engineering Design Co. Lian Hu Road, No. 6 Courtyard Xi'an 710082 China
| |
Collapse
|
10
|
Li B, Ke XX, Zhong LB, Wu RX, Yuan ZH, Fan JJ, Zheng YM. Super-hydrophilic nanofiber substrate supported forward osmosis membrane with less polyamide layer defects by polydopamine-graphene oxide modification for high salinity desulfurization wastewater desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Fabrication of dialyzer membrane-based forward osmosis modules via vacuum-assisted interfacial polymerization for the preparation of dialysate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Preparation and characterization of novel thin film composite forward osmosis membrane with halloysite nanotube interlayer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance. MEMBRANES 2022; 12:membranes12070675. [PMID: 35877880 PMCID: PMC9317275 DOI: 10.3390/membranes12070675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Incorporating polydopamine has become a viable method for membrane modification due to its universality and versatility. Fillers in their different categories have been confirmed as effective elements to improve the properties of membranes such as hydrophilicity, permeability, mechanical strength, and fouling resistance. Thus, this paper mainly highlights the recent studies that have been carried out using polydopamine and nanomaterial fillers simultaneously in modifying the performance of different membranes such as ultrafiltration, microfiltration, nanofiltration, reverse osmosis, and forward osmosis membranes according to the various modification methods. Graphene oxide nanoparticles have recently attracted a lot of attention among different nanoparticles used with polydopamine, due to their impressive characteristics impacts on enhancing membrane hydrophilicity, mechanical strength, and fouling resistance. Thus, the incorporation techniques of graphene oxide nanoparticles and polydopamine for enhancing membranes have been highlighted in this work. Moreover, different studies carried out on using polydopamine as a nanofiller for optimizing membrane performance have been discussed. Finally, perspectives, and possible paths of further research on mussel-inspired polydopamine and nanoparticles co-incorporation are stated according to the progress made in this field. It is anticipated that this review would provide benefits for the scientific community in designing a new generation of polymeric membranes for the treatment of different feed water and wastewater based on adhesive mussel inspired polydopamine polymer and nanomaterials combinations.
Collapse
|
14
|
Jain H, Verma AK, Dhupper R, Wadhwa S, Garg MC. Development of CA-TiO2-incorporated thin-film nanocomposite forward osmosis membrane for enhanced water flux and salt rejection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2022; 19:5387-5400. [DOI: 10.1007/s13762-021-03415-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 05/22/2021] [Indexed: 08/20/2024]
|
15
|
Tang Y, Cai Z, Sun X, Chong C, Yan X, Li M, Xu J. Electrospun Nanofiber-Based Membranes for Water Treatment. Polymers (Basel) 2022; 14:2004. [PMID: 35631886 PMCID: PMC9144434 DOI: 10.3390/polym14102004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Water purification and water desalination via membrane technology are generally deemed as reliable supplementaries for abundant potable water. Electrospun nanofiber-based membranes (ENMs), benefitting from characteristics such as a higher specific surface area, higher porosity, lower thickness, and possession of attracted broad attention, has allowed it to evolve into a promising candidate rapidly. Here, great attention is placed on the current status of ENMs with two categories according to the roles of electrospun nanofiber layers: (i) nanofiber layer serving as a selective layer, (ii) nanofiber layer serving as supporting substrate. For the nanofiber layer's role as a selective layer, this work presents the structures and properties of conventional ENMs and mixed matrix ENMs. Fabricating parameters and adjusting approaches such as polymer and cosolvent, inorganic and organic incorporation and surface modification are demonstrated in detail. It is crucial to have a matched selective layer for nanofiber layers acting as a supporting layer. The various selective layers fabricated on the nanofiber layer are put forward in this paper. The fabrication approaches include inorganic deposition, polymer coating, and interfacial polymerization. Lastly, future perspectives and the main challenges in the field concerning the use of ENMs for water treatment are discussed. It is expected that the progress of ENMs will promote the prosperity and utilization of various industries such as water treatment, environmental protection, healthcare, and energy storage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.T.); (Z.C.); (X.S.); (C.C.); (X.Y.); (M.L.)
| |
Collapse
|
16
|
Liu D, Tian C, Shan M, Zhu J, Zhang Y. Interface synthesis of flexible benzimidazole-linked polymer molecular-sieving membranes with superior antimicrobial activity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Yang Y, Song C, Wang P, Fan X, Xu Y, Dong G, Liu Z, Pan Z, Song Y, Song C. Insights into the impact of polydopamine modification on permeability and anti-fouling performance of forward osmosis membrane. CHEMOSPHERE 2022; 291:132744. [PMID: 34743795 DOI: 10.1016/j.chemosphere.2021.132744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Forward osmosis (FO) has drawn wide attention as a promising method to address world-wide water crisis due to the advantages of low-energy consumption and easy separation operation. Unfortunately, the trade-off between permeability and selectivity as well as membrane fouling hindered the application of forward osmosis. Surface modification is a feasible method to address these issues. However, there is a lack of systematic evaluation about the effect of modification position on FO performance due to the asymmetric structure of thin film composite (TFC) FO membrane. To provide new insights into the design of FO membrane with satisfied permeability and fouling resistance, novel TFC FO membranes were fabricated by introducing polydopamine (PDA) on the support layer (TFC-I) or active layer (TFC-S), respectively. The surface morphology, chemical composition and wettability of the fabricated membrane were studied. It was found that the surface wettability of the modified membrane was improved greatly compared to pristine TFC membrane (TFC-C). Moreover, TFC-S membrane displayed a rougher surface than that of TFC-I membrane. As a result, a superior TFC-S membrane with a water flux of 60.95 ± 3.15 L m-2h-1 in AL-DS mode was obtained, which was 72.61% and 17.87% higher than that of TFC-C and TFC-I membrane, respectively. In addition, the TFC-S membrane also presented an excellent fouling resistance and membrane regeneration performance during the three organic fouling cycle experiments. The results indicated that the introduction of PDA as a surface coating for TFC membranes modification guaranteed the high-performance and fouling resistance. Especially, the PDA coating on the support layer surface resulted in an enhancement in permeability, while both the permeability and anti-fouling performance were significantly improved with the PDA coating on the polyamide active layer surface. This study provides new insights into the development of modification TFC-FO membranes for practical applications in water treatment.
Collapse
Affiliation(s)
- Yi Yang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Chunyang Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| | - Yuanlu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Guanming Dong
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Zhijian Liu
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| |
Collapse
|
18
|
Xiao F, Ge H, Wang Y, Bian S, Tong Y, Gao C, Zhu G. Novel thin-film composite membrane with polydopamine-modified polyethylene support and tannic acid-Fe3+ interlayer for forward osmosis applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Liu D, Li K, Li M, Wang Z, Shan M, Zhang Y. Moderately Crystalline Azine-Linked Covalent Organic Framework Membrane for Ultrafast Molecular Sieving. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37775-37784. [PMID: 34319063 DOI: 10.1021/acsami.1c06891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks are potential candidates for the preparation of advanced molecular separation membranes due to their porous structure, uniform aperture, and chemical stability. However, the fabrication of continuous COF membranes in a facile and mild manner remains a challenge. Herein, a continuous, defect-free, and flexible azine-linked ACOF-1 membrane was prepared on a hydrolyzed polyacrylonitrile (HPAN) substrate via in situ interfacial polymerization (IP). A moderately crystalline COF ultrathin selective layer enabled ultrafast molecular sieving. The effect of synthesis parameters including precursor concentration, catalyst dosage, and reaction duration on the dye separation performance was investigated. The optimized membrane displayed an ultrahigh water permeance of 142 L m-2 h-1 bar-1 together with favorable rejection (e.g., 99.2% for Congo red and 96.3% for methyl blue). The water permeance is 5-12 times higher than that of reported membranes with similar rejections. In addition, ACOF-1 membranes demonstrate outstanding long-term stability together with organic solvent and extreme pH resistance. Meanwhile, the membrane is suitable for removing dyes from salt solution products owing to their nonselective permeation for hydrated salt ions (<10.6%). The superior performance and the excellent chemical stability render the ACOF-1 membrane a satisfactory system for water purification.
Collapse
Affiliation(s)
- Decheng Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Kai Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Min Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meixia Shan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|